• 제목/요약/키워드: Non-linear property

검색결과 188건 처리시간 0.029초

COINCIDENCE THEOREMS FOR COMPARABLE GENERALIZED NON LINEAR CONTRACTIONS IN ORDERED PARTIAL METRIC SPACES

  • Dimri, Ramesh Chandra;Prasad, Gopi
    • 대한수학회논문집
    • /
    • 제32권2호
    • /
    • pp.375-387
    • /
    • 2017
  • In this paper, we prove some coincidence point theorems involving ${\varphi}-contraction$ in ordered partial metric spaces. We also extend newly introduced notion of g-comparability of a pair of maps for linear contraction in ordered metric spaces to non-linear contraction in ordered partial metric spaces. Thus, our results extend, modify and generalize some recent well known coincidence point theorems of ordered metric spaces.

비선형 특성을 이용한 디지털 영상 워터마킹 방법 (A Digital Image Watermarking Method using Non-linear Property)

  • 고성식;정용덕;김정화
    • 대한전자공학회논문지TE
    • /
    • 제39권3호
    • /
    • pp.28-34
    • /
    • 2002
  • 본 논문에서는 영상을 구성하는 픽셀 정보의 비선형 분포 특성을 이용하여 공간 영역에서 워터마크를 삽입하는 새로운 워터마킹 기법을 제안한다. 제안한 방법의 기본 원리는 원 영상을 일정한 단위의 블록으로 분할하면 분할된 블록 내 픽셀들은 서로 상관성이 없이 비선형적 특성를 가진다는 것을 이용하는 것이다. 즉 비선형 특성이 강한 블록은 영상 정보의 변화가 많기 때문에 정보의 변화에 따른 인간의 시각적 차이는 크지 않고, 비선형 특성이 약한 블록은 영상 정보의 변화가 적지만 미소한 정보의 변화는 시각적 차이를 쉽게 느끼게 된다. 따라서 원 영상에 워터마크를 삽입하기 위해 분할된 블록 내 픽셀 변화량이 많으면 워터마크를 강하게 삽입하고, 반면에 픽셀 변화량이 적으면 워터마크를 약하게 삽입하여 비선형적으로 워터마크킹을 하였다. 실험적 결과를 통해 워터마크가 삽입된 영상은 다양한 영상 처리의 공격에 대해 강인성을 유지시킬 수 있어 소유권 주장을 보다 명확히 할 수 있음을 증명하였다.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구 (The study on the possibility of performance analysis for the compressive member using the numerical method)

  • 김광철
    • 한국가구학회지
    • /
    • 제21권1호
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

SOME RESULTS RELATED TO NON-DEGENERATE LINEAR TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS

  • K. Saravanan;V. Piramanantham;R. Theivaraman
    • Korean Journal of Mathematics
    • /
    • 제31권4호
    • /
    • pp.495-504
    • /
    • 2023
  • This article deals with non-degenerate linear transformations on Euclidean Jordan algebras. First, we study non-degenerate for cone invariant, copositive, Lyapunov-like, and relaxation transformations. Further, we study that the non-degenerate is invariant under principal pivotal transformations and algebraic automorphisms.

정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구 (A study on the biorthogonally coded Q$^{2}$AM with constant envelope property)

  • 박인재;심수보
    • 한국통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

우수한 비주기 자기상관 특성을 갖는 새로운 다중 위상 부호열 (New Polyphase Sequence with Good Nonperiodic Autocorrelation Property)

  • 문경하;홍윤표;최기훈;송홍엽
    • 한국통신학회논문지
    • /
    • 제29권7C호
    • /
    • pp.915-920
    • /
    • 2004
  • 본 논문에서는 비주기 자기상관 특성의 중요한 지표가 되는 merit factor의 관점에서 가장 우수한 비주기 자기상관 특성을 갖는 새로운 다중 위상 부호열(polyphase sequence)을 제안한다. 또한, 정수 환(integer residue ring)에서 LFSR(Linear Feedback Shift Register)을 이용한 일반적인 다중 위상 부호열 생성기를 제안하고 제안된 생성기에 기반한 다중 위상 부호열의 선형 복잡도를 분석한다.

대변형을 하는 고무 부품의 거동에 관한 해석 (An analysis about the behavior of rubber component with large deformation)

  • 한문식;조재웅
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.47-53
    • /
    • 2005
  • The non-linear finite element program of the large deformation analysis by computer simulation has been used in the prediction and evaluation of the behaviors of the non-linear rubber components. The analysis of rubber components requires the tools modelling the special materials that are quite different from those used for the metallic parts. The nonlinear simulation analysis used in this study is expected to be widely applied in the design analysis and the development of several rubber components which are used In the manufacturing process of many industries. By utilizing this method, the time and cost can also be saved in developing the new rubber product. The objective of this study is to analyze the rubber component with the large deformation and non-linear properties.

고정비용과 비선형 단위운송비용을 가지는 수송문제를 위한 이단유전알고리즘에 관한 연구 (A Study on the Bi-level Genetic Algorithm for the Fixed Charge Transportation Problem with Non-linear Unit Cost)

  • 성기석
    • 한국경영과학회지
    • /
    • 제41권4호
    • /
    • pp.113-128
    • /
    • 2016
  • This paper proposes a Bi-level Genetic Algorithm for the Fixed Charge Transportation Problem with Non-linear Unit Cost. The problem has the property of mixed integer program with non-linear objective function and linear constraints. The bi-level procedure consists of the upper-GA and the lower-GA. While the upper-GA optimize the connectivity between each supply and demand pair, the lower-GA optimize the amount of transportation between the pairs set to be connected by the upper-GA. In the upper-GA, the feasibility of the connectivity are verified, and if a connectivity is not feasible, it is modified so as to be feasible. In the lower-GA, a simple method is used to obtain a pivot feasible solution under the restriction of the connectivity determined by the upper-GA. The obtained pivot feasible solution is utilized to generate the initial generation of chromosomes. The computational experiment is performed on the selected problems with several non-linear objective functions. The performance of the proposed procedure is analyzed with the result of experiment.