• Title/Summary/Keyword: Non-linear property

Search Result 187, Processing Time 0.029 seconds

COINCIDENCE THEOREMS FOR COMPARABLE GENERALIZED NON LINEAR CONTRACTIONS IN ORDERED PARTIAL METRIC SPACES

  • Dimri, Ramesh Chandra;Prasad, Gopi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.375-387
    • /
    • 2017
  • In this paper, we prove some coincidence point theorems involving ${\varphi}-contraction$ in ordered partial metric spaces. We also extend newly introduced notion of g-comparability of a pair of maps for linear contraction in ordered metric spaces to non-linear contraction in ordered partial metric spaces. Thus, our results extend, modify and generalize some recent well known coincidence point theorems of ordered metric spaces.

A Digital Image Watermarking Method using Non-linear Property (비선형 특성을 이용한 디지털 영상 워터마킹 방법)

  • Koh, Sung-Shik;Chung, Yong-Duk;Kim, Chung-Hwa
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.28-34
    • /
    • 2002
  • This paper describes embedding non-linearly watermark data in the components of pixel intensities in the spatial domain of an image. The principle of the proposed method is that when an image is segmented regularly to the blocks, the pixels of the block have the non-linear properties without any similarity. That is, for the block with strong non-linear property human can't feel the visual different to the modified pixel values, on the other hand for the block with weak non-linear property human can feel the visual different to the a little modified pixel values. Thus we could embed the watermark data according to the non-linear property of the blocks. As the result of the simulation, against some general image processing attacks our algorithm could keep robust and be responsible for the copyright certainly. 

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

The study on the possibility of performance analysis for the compressive member using the numerical method (수치해석법을 활용한 압축부재 성능 해석의 가능성에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.1
    • /
    • pp.26-39
    • /
    • 2010
  • This is a leading study to replace the structural analysis methodology on the specific traditional joint by a numerical analysis. Tests were carried out to test the compressive methodologies with the numerical results. The Japanese larch was used as a sample. The Orthotropic property of wood was specifically considered for the finite element numerical analysis. Linear numerical analysis and non-linear numerical analysis for the BEAM element and the two SOLID elements of ANSYS were used to analyze the compressive performance. In addition, more finely divided elements were used to raise the accuracy of the numerical result. Finally, the statistically significant differences were tested between that of the analytical and numerical results. It could be concluded that the SOLID 64 element shows the most optimum result when the non-linear analysis with the more finely divided element was used. However, finely dividing of the element is a considerable time consuming process, and it is quite difficult to raise the accuracy of the non-linear numerical analysis. Therefore, if considering the vertical displacement to be of the only interest, the BEAM element is more efficient than the SOLID element because the BEAM element is reflected as a simple line, which is less time consuming and difficult in dividing the elements. But, the BEAM element cannot accurately model the knot as a strength defect factor which is an important property in the orthotropic property of wood. Therefore, the SOLID element should be used to model the strength defect factor, knot, as it can be efficiently applied on the structural size flexure member which could be more strongly effected by the knot. In addition, it is useful at times when the failure types of members are to be more closely investigated, as the SOLID element is able to examine the local stress distribution of the member. The conclusion drawn by this study is of the good concordance between analytical results and numerical results of compressive wood members, but how orthotropic properties should only be considered. The numerical analysis on the specific Korean traditional joints will be based on the current study results.

  • PDF

SOME RESULTS RELATED TO NON-DEGENERATE LINEAR TRANSFORMATIONS ON EUCLIDEAN JORDAN ALGEBRAS

  • K. Saravanan;V. Piramanantham;R. Theivaraman
    • Korean Journal of Mathematics
    • /
    • v.31 no.4
    • /
    • pp.495-504
    • /
    • 2023
  • This article deals with non-degenerate linear transformations on Euclidean Jordan algebras. First, we study non-degenerate for cone invariant, copositive, Lyapunov-like, and relaxation transformations. Further, we study that the non-degenerate is invariant under principal pivotal transformations and algebraic automorphisms.

A study on the biorthogonally coded Q$^{2}$AM with constant envelope property (정진폭특성을 갖는 Birothogonal 부호로 부호화된 Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation)에 관한 연구)

  • 박인재;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2470-2480
    • /
    • 1996
  • The energy efficiency and bandwidth efficiency are two important criterion in designing a modulation scheme Especially the constant envelope property must be considered as in the non-linear channel tht exit, for example in the nonlinear amplifiers for satellite repeater. The Q$^{2}$AM(Quadrature Quadrature Amplitude Modulation) is a new modulation scheme which combines the Q$^{2}$PSK(Quadrature Quadrature Phase Shift Keying) scheme which increases the signal space dimension and the QAM scheme which increases the bandwidth efficiency using the multi-level signal. The Q$^{2}$AM scheme has by far superior spectrum efficiency compared with the existing modulation schemes. Applying this scheme in the non-linear communication system increses the bandwidth efficiency but cannot envelop property. In this paper, a new system architecture is suggested which satisfies the large spectrum efficiency and constant envelope property by implementing the linear block coding prior to the Q$^{2}$AM modulation. the system has improved in performance by gaining the constant envelope and the additional coding gain. We able to observe the performance improvement of the suggested system(at BER=10$^{-5}$ ) of 4.4 dB for the 16-QAM and 0.7 dB for the Q$^{2}$PSK under the exact spectrum efficiency.

  • PDF

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

New Polyphase Sequence with Good Nonperiodic Autocorrelation Property (우수한 비주기 자기상관 특성을 갖는 새로운 다중 위상 부호열)

  • 문경하;홍윤표;최기훈;송홍엽
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7C
    • /
    • pp.915-920
    • /
    • 2004
  • In this paper, we propose the new polyphase sequence with the best nonperiodic autocorrelation property in the viewpoint of the merit factors, which are important criteria for a nonperiodic autocorrelation property. We propose the general implementation of a polyphase sequence generator over an integer residue ring by using a linear feedback shift register(LFSR), in addition, we analyze the linear complexities of polyphase sequences based on the proposed implementation method.

An analysis about the behavior of rubber component with large deformation (대변형을 하는 고무 부품의 거동에 관한 해석)

  • Han Moon-Sik;Cho Jae-Ung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2005
  • The non-linear finite element program of the large deformation analysis by computer simulation has been used in the prediction and evaluation of the behaviors of the non-linear rubber components. The analysis of rubber components requires the tools modelling the special materials that are quite different from those used for the metallic parts. The nonlinear simulation analysis used in this study is expected to be widely applied in the design analysis and the development of several rubber components which are used In the manufacturing process of many industries. By utilizing this method, the time and cost can also be saved in developing the new rubber product. The objective of this study is to analyze the rubber component with the large deformation and non-linear properties.

A Study on the Bi-level Genetic Algorithm for the Fixed Charge Transportation Problem with Non-linear Unit Cost (고정비용과 비선형 단위운송비용을 가지는 수송문제를 위한 이단유전알고리즘에 관한 연구)

  • Sung, Kiseok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.4
    • /
    • pp.113-128
    • /
    • 2016
  • This paper proposes a Bi-level Genetic Algorithm for the Fixed Charge Transportation Problem with Non-linear Unit Cost. The problem has the property of mixed integer program with non-linear objective function and linear constraints. The bi-level procedure consists of the upper-GA and the lower-GA. While the upper-GA optimize the connectivity between each supply and demand pair, the lower-GA optimize the amount of transportation between the pairs set to be connected by the upper-GA. In the upper-GA, the feasibility of the connectivity are verified, and if a connectivity is not feasible, it is modified so as to be feasible. In the lower-GA, a simple method is used to obtain a pivot feasible solution under the restriction of the connectivity determined by the upper-GA. The obtained pivot feasible solution is utilized to generate the initial generation of chromosomes. The computational experiment is performed on the selected problems with several non-linear objective functions. The performance of the proposed procedure is analyzed with the result of experiment.