• Title/Summary/Keyword: Non-Gaussian model

Search Result 154, Processing Time 0.025 seconds

An Analysis on BER Performance of Satellite Communication System Classified by SFH-Modulation Method under Jamming (Jamming 환경에서 SFH 변조 방식에 따른 위성 통신 시스템의 BER 성능 분석)

  • Park, Woo-Chul;Go, Kwang-Chun;Kim, Jae-Hyun;Kim, Ki-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1161-1168
    • /
    • 2010
  • The FHSS(Frequency Hopping Spread Spectrum), in which a transmitter changes its carrier frequency according to a certain hopping pattern, is widely used in the military communication system, since it is highly resistant to deliberate Jamming. However, the difference of BER performance of satellite communication system which using the different modulation scheme and Jamming model was not studied. Thus, in this paper, we consider PBNJ(Partial-Band Noise Jamming) and WPBJ(Worst case Partial-Band noise Jamming) as Jamming models, and evaluate BER(Bit Error Rate) performances of NC-MFSK(Non-Coherent M-ary Frequency-Shift Keying), SDPSK(Symmetric Differential Phase-Shift Keying), and GMSK(Gaussian filtered Minimum-Shift Keying) modulation schemes. Based on the results, we suggest the best transmission method for each condition.

Statistical Inference in Non-Identifiable and Singular Statistical Models

  • Amari, Shun-ichi;Amari, Shun-ichi;Tomoko Ozeki
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.179-192
    • /
    • 2001
  • When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.

  • PDF

Feature Extraction Algorithm for Underwater Transient Signal Using Cepstral Coefficients Based on Wavelet Packet (웨이브렛 패킷 기반 캡스트럼 계수를 이용한 수중 천이신호 특징 추출 알고리즘)

  • Kim, Juho;Paeng, Dong-Guk;Lee, Chong Hyun;Lee, Seung Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.552-559
    • /
    • 2014
  • In general, the number of underwater transient signals is very limited for research on automatic recognition. Data-dependent feature extraction is one of the most effective methods in this case. Therefore, we suggest WPCC (Wavelet packet ceptsral coefficient) as a feature extraction method. A wavelet packet best tree for each data set is formed using an entropy-based cost function. Then, every terminal node of the best trees is counted to build a common wavelet best tree. It corresponds to flexible and non-uniform filter bank reflecting characteristics for the data set. A GMM (Gaussian mixture model) is used to classify five classes of underwater transient data sets. The error rate of the WPCC is compared using MFCC (Mel-frequency ceptsral coefficients). The error rates of WPCC-db20, db40, and MFCC are 0.4%, 0%, and 0.4%, respectively, when the training data consist of six out of the nine pieces of data in each class. However, WPCC-db20 and db40 show rates of 2.98% and 1.20%, respectively, while MFCC shows a rate of 7.14% when the training data consists of only three pieces. This shows that WPCC is less sensitive to the number of training data pieces than MFCC. Thus, it could be a more appropriate method for underwater transient recognition. These results may be helpful to develop an automatic recognition system for an underwater transient signal.

Performance Analysis of User Clustering Algorithms against User Density and Maximum Number of Relays for D2D Advertisement Dissemination (최대 전송횟수 제한 및 사용자 밀집도 변화에 따른 사용자 클러스터링 알고리즘 별 D2D 광고 확산 성능 분석)

  • Han, Seho;Kim, Junseon;Lee, Howon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.721-727
    • /
    • 2016
  • In this paper, in order to resolve the problem of reduction for D2D (device to device) advertisement dissemination efficiency of conventional dissemination algorithms, we here propose several clustering algorithms (modified single linkage algorithm (MSL), K-means algorithm, and expectation maximization algorithm with Gaussian mixture model (EM)) based advertisement dissemination algorithms to improve advertisement dissemination efficiency in D2D communication networks. Target areas are clustered in several target groups by the proposed clustering algorithms. Then, D2D advertisements are consecutively distributed by using a routing algorithm based on the geographical distribution of the target areas and a relay selection algorithm based on the distance between D2D sender and D2D receiver. Via intensive MATLAB simulations, we analyze the performance excellency of the proposed algorithms with respect to maximum number of relay transmissions and D2D user density ratio in a target area and a non-target area.

Adjustment of Korean Birth Weight Data (한국 신생아의 출생체중 데이터 보정)

  • Shin, Hyungsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.259-264
    • /
    • 2017
  • Birth weight of a new born baby provides very important information in evaluating many clinical issues such as fetal growth restriction. This paper analyzes birth weight data of babies born in Korea from 2011 to 2013, and it shows that there is a biologically implausible distribution of birth weights in the data. This implies that some errors may be generated in the data collection process. In particular, this paper analyzes the relationship between gestational period and birth weight, and it is shown that the birth weight data mostly of gestational periods from 28 to 32 weeks have noticeable errors. Therefore, this paper employs the finite Gaussian mixture model to classify the collected data points into two classes: non-corrupted and corrupted. After the classification the paper removes data points that have been predicted to be corrupted. This adjustment scheme provides more natural and medically plausible percentile values of birth weights for all the gestational periods.

A New Face Tracking and Recognition Method Adapted to the Environment (환경에 적응적인 얼굴 추적 및 인식 방법)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.385-394
    • /
    • 2009
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. The main reasons for the failure to track and recognize the faces are the changes of a face pose and environmental illumination. To solve these problems, we propose a nonlinear manifold framework for the face pose and the face illumination normalization processing. Specifically, to track and recognize a face on the video that has various pose variations, we approximate a face pose density to single Gaussian density by PCA(Principle Component Analysis) using images sampled from training video sequences and then construct the GMM(Gaussian Mixture Model) for each person. To solve the illumination problem for the face tracking and recognition, we decompose the face images into the reflectance and the illuminance using the SSR(Single Scale Retinex) model. To obtain the normalized reflectance, the reflectance is rescaled by histogram equalization on the defined range. We newly approximate the illuminance by the trained manifold since the illuminance has almost variations by illumination. By combining these two features into our manifold framework, we derived the efficient face tracking and recognition results on indoor and outdoor video. To improve the video based tracking results, we update the weights of each face pose density at each frame by the tracking result at the previous frame using EM algorithm. Our experimental results show that our method is more efficient than other methods.

Scream Sound Detection Based on Universal Background Model Under Various Sound Environments (다양한 소리 환경에서 UBM 기반의 비명 소리 검출)

  • Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.485-492
    • /
    • 2017
  • GMM has been one of the most popular methods for scream sound detection. In the conventional GMM, the whole training data is divided into scream sound and non-scream sound, and the GMM is trained for each of them in the training process. Motivated by the idea that the process of scream sound detection is very similar to that of speaker recognition, the UBM which has been used quite successfully in speaker recognition, is proposed for use in scream sound detection in this study. We could find that UBM shows better performance than the traditional GMM from the experimental results.

Nonlinear rheology of polymer melts: a new perspective on finite chain extensibility effects

  • Wagner Manfred H.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2006
  • Measurements by Luap et al. (2005) of elongational viscosity and birefringence of two nearly monodisperse polystyrene melts with molar masses $M_{w}$ of $206,000g{\cdot}mol^{-1}$ (PS206k) and $465,000g{\cdot}mol^{-1}$ (PS465k) respectively are reconsidered. At higher elongational stresses, the samples showed clearly deviations from the stress optical rule (SOR). The elongational viscosity data of both melts can be modeled quantitatively by the MSF model of Wagner et al. (2005), which is based on the assumption of a strain-dependent tube diameter and the interchain pressure term of Marrucci and Ianniruberto (2004). The only nonlinear parameter of the model, the tube diameter relaxation time, scales with $M_{w}^{2}$. In order to get agreement with the birefringence data, finite chain extensibility effects are taken into account by use of the $Pad\'{e}$ approximation of the inverse Langevin function, and the interchain pressure term is modified accordingly. Due to a selfregulating limitation of chain stretch by the FENE interchain pressure term, the transient elongational viscosity shows a small dependence on finite extensibility only, while the predicted steady-state elongational viscosity is not affected by non-Gaussian effects in agreement with experimental evidence. However, deviations from the SOR are described quantitatively by the MSF model by taking into account finite chain extensibility, and within the experimental window investigated, deviations from the SOR are predicted to be strain rate, temperature, and molar mass independent for the two nearly monodisperse polystyrene melts in good agreement with experimental data.

Counterfactual image generation by disentangling data attributes with deep generative models

  • Jieon Lim;Weonyoung Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.6
    • /
    • pp.589-603
    • /
    • 2023
  • Deep generative models target to infer the underlying true data distribution, and it leads to a huge success in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor in the data generation process since non-existent counterfactual samples can be generated by altering certain factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically, we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results support that the proposed model can produce data that can deceive other machine learning classifiers with the altered data attributes.

A Particle Filtering Approach for On-Line Failure Prognosis in a Planetary Carrier Plate

  • Orchard, Marcos E.;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.221-227
    • /
    • 2007
  • This paper introduces an on-line particle-filtering-based framework for failure prognosis in nonlinear, non-Gaussian systems. This framework uses a nonlinear state-space model of the plant(with unknown time-varying parameters) and a particle filtering(PF) algorithm to estimate the probability density function(pdf) of the state in real-time. The state pdf estimate is then used to predict the evolution in time of the fault indicator, obtaining as a result the pdf of the remaining useful life(RUL) for the faulty subsystem. This approach provides information about the precision and accuracy of long-term predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a seeded fault test for a UH-60 planetary carrier plate are used to validate the proposed methodology.