참고문헌
- Doucet, N. de Freitas, and N. Gordon, 'An introduction to Sequential Monte Carlo methods,' in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-Verlag, 2001
- M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, 'A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking,' IEEE Transactions on Signal Processing, vol. 50, no. 2, February 2002
- V. Kadirkamanathan, P. Li, M. H. Jaward, and S. G. Fabri, 'Particle filtering-based fault detection in non-linear stochastic systems,' International Journal of Systems Science, vol. 33, no. 4, pp. 259 - 265, 2002 https://doi.org/10.1080/00207720110102566
- X. Koutsoukos, J. Kurien, and F. Zhao, 'Monitoring and Diagnosis of Hybrid Systems Using Particle Filtering Models,' International Symposium on Mathematical Theory of Networks and Systems, 2002
- P. Li, and V. Kadirkamanathan, 'Particle Filtering Based Likelihood Ratio Approach to Fault Diagnosis in Nonlinear Stochastic Systems,' IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews, vol. 31, no. 3, 2001
- V. Verma, G. Gordon, R. Simmons, and S. Thrun, 'Particle Filters for Rover Fault Diagnosis,' IEEE Robotics & Automation Magazine, pp. 56 - 64, June 2004
- N. de Freitas, 'Rao-Blackwellised Particle Filtering for Fault Diagnosis,' IEEE Aerospace Conference Proceedings (Cat. No. 02TH8593), pt. 4, pp. 1767 - 1772, 2002
- A. J. Haug, 'A Tutorial on Bayesian Estimation and Tracking Techniques Applicable to Nonlinear and NonGaussian Processes,' MITRE Technical Report. MTR 05W0000004, The MITRE Corporation, 2005
- C. Andrieu, A. Doucet, and E. Punskaya, 'Sequential Monte Carlo Methods for Optimal Filtering,' in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer-Verlag, 2001
- A. Doucet, S. Godsill, and C. Andrieu, 'On Sequential Monte Carlo sampling methods for Bayesian filtering,' Statistics and Computing, vol. 10, no 3, pp. 197-208, July 2000 https://doi.org/10.1023/A:1008935410038
- A. Ray, and S. Tangirala, 'Stochastic Modeling of Fatigue Crack Dynamics for On-Line Failure Prognosis,' IEEE Transactions on Control Systems Technology, vol. 4, no. 4, pp. 443 - 451, 1996 https://doi.org/10.1109/87.508893
- R. Patrick, A Model Based Frameworkfor Fault Diagnosis and Prognosis of Dynamical Systems with an Application to Helicopter Transmissions, Ph.D. Thesis, Department of Electrical and Computer Engineering, Georgia institute of Technology, 2007
- M. Orchard, A Particle Filtering-based Frameworkfor Online Fault Diagnosis and Failure Prognosis, Ph.D. Thesis, Department of Electrical and Computer Engineering, Georgia institute of Technology, 2007
피인용 문헌
- A Survey on Prognostics and Comparison Study on the Model-Based Prognostics vol.17, pp.11, 2011, https://doi.org/10.5302/J.ICROS.2011.17.11.1095
- Identification of correlated damage parameters under noise and bias using Bayesian inference vol.11, pp.3, 2012, https://doi.org/10.1177/1475921711424520
- Prognostics Health Management of Electronic Systems Under Mechanical Shock and Vibration Using Kalman Filter Models and Metrics vol.59, pp.11, 2012, https://doi.org/10.1109/TIE.2012.2183834
- Extended Kalman Filter Models and Resistance Spectroscopy for Prognostication and Health Monitoring of Leadfree Electronics Under Vibration vol.61, pp.4, 2012, https://doi.org/10.1109/TR.2012.2220698
- Uncertainty Quantification in Gear Remaining Useful Life Prediction Through an Integrated Prognostics Method vol.62, pp.1, 2013, https://doi.org/10.1109/TR.2013.2241216
- Fault Prediction for Nonlinear System Using Sliding ARMA Combined with Online LS-SVR vol.2014, pp.1563-5147, 2014, https://doi.org/10.1155/2014/692848
- Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction vol.63, pp.1, 2014, https://doi.org/10.1109/TR.2014.2299152
- A SVR-Based Remaining Life Prediction for Rolling Element Bearings vol.15, pp.4, 2015, https://doi.org/10.1007/s11668-015-9976-x
- An Integrated Prognostics Method Under Time-Varying Operating Conditions vol.64, pp.2, 2015, https://doi.org/10.1109/TR.2015.2407671
- Real-Time Prognosis of Crack Growth Evolution Using Sequential Monte Carlo Methods and Statistical Model Parameters vol.64, pp.2, 2015, https://doi.org/10.1109/TR.2014.2366759
- A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects vol.26, pp.5, 2016, https://doi.org/10.5391/JKIIS.2016.26.5.343
- Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading vol.35, pp.10, 2011, https://doi.org/10.3795/KSME-A.2011.35.10.1299
- Remaining Useful Life Prediction of Li-Ion Battery Based on Charge Voltage Characteristics vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-B.2013.37.4.313
- Integrated Equipment Health Prognosis Considering Crack Initiation Time Uncertainty and Random Shock vol.30, pp.6, 2017, https://doi.org/10.1007/s10033-017-0200-7
- Fully Adaptive Particle Filtering Algorithm for Damage Diagnosis and Prognosis vol.20, pp.2, 2018, https://doi.org/10.3390/e20020100
- An Integrated Prognostics Method for Failure Time Prediction of Gears Subject to the Surface Wear Failure Mode vol.67, pp.1, 2018, https://doi.org/10.1109/TR.2017.2781147
- Degradation assessment for the ball screw with variational autoencoder and kernel density estimation vol.10, pp.9, 2018, https://doi.org/10.1177/1687814018797261
- Bearing Remaining Useful Life Prediction Based on a Nonlinear Wiener Process Model vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/4068431