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Abstract
Deep generative models target to infer the underlying true data distribution, and it leads to a huge success

in generating fake-but-realistic data. Regarding such a perspective, the data attributes can be a crucial factor
in the data generation process since non-existent counterfactual samples can be generated by altering certain
factors. For example, we can generate new portrait images by flipping the gender attribute or altering the hair
color attributes. This paper proposes counterfactual disentangled variational autoencoder generative adversarial
networks (CDVAE-GAN), specialized for data attribute level counterfactual data generation. The structure of the
proposed CDVAE-GAN consists of variational autoencoders and generative adversarial networks. Specifically,
we adopt a Gaussian variational autoencoder to extract low-dimensional disentangled data features and auxiliary
Bernoulli latent variables to model the data attributes separately. Also, we utilize a generative adversarial network
to generate data with high fidelity. By enjoying the benefits of the variational autoencoder with the additional
Bernoulli latent variables and the generative adversarial network, the proposed CDVAE-GAN can control the
data attributes, and it enables producing counterfactual data. Our experimental result on the CelebA dataset
qualitatively shows that the generated samples from CDVAE-GAN are realistic. Also, the quantitative results
support that the proposed model can produce data that can deceive other machine learning classifiers with the
altered data attributes.

Keywords: counterfactual data generation, deep generative model, variational autoencoder, gen-
erative adversarial network, disentangled feature extraction

1. Introduction

Traditional generative models aim to model the data distribution and the data generation process by
inferring the relationship between the data and their labels or attributes. Recently, deep generative
models have arisen for generating realistic data due to the success of deep neural networks. For
example, a variational autoencoder (VAE) (Kingma and Welling, 2014) explicitly models the latent
distribution of data, and it can extract data features in relatively low dimensions with the encoder
network. Afterward, the extracted feature can be utilized in data generation through the decoder
network. Meanwhile, a generative adversarial network (GAN) (Goodfellow et al., 2014) can generate
data from implicit distribution by adversarial training of the generator and discriminator networks. As
a result, GANs can generate realistic data from random noise through the generator network.
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Figure 1: The neural network architecture of VAE.

In counterfactual data generation, we can interpret the effectiveness of the alternation or the per-
turbation by generating the data with an assumption on the situation which has not happened. For
example, counterfactual image generation can be utilized in open set recognition to detect unknown
classes by resembling real images of known classes and exploring unseen properties in the training
dataset (Neal et al., 2018). Furthermore, the work of Kusner et al. (2017), as known as counterfactual
fairness, analyzes if a fair decision has been made with respect to certain factors by comparing the
real data and the counterfactually generated fake data.

Recently, several works have been conducted regarding learning disentangled representation in
deep generative models. β-VAE (Higgins et al., 2016) introduces adjustable hyperparameter β as
a scale factor to the KL divergence term in the loss function. Appropriately tuned β > 1 results
in disentangled representation learning and discovers more factors compared to the previous works.
JointVAE (Dupont, 2018) utilizes both continuous and discrete priors to generate diverse and realistic
images. By augmenting the discrete priors, JointVAE is able to discover categorical features auto-
matically. However, those works did not fully utilize the data attributes, which are the auxiliary data
information.

This paper proposes counterfactual disentangled variational autoencoder generative adversarial
networks (CDVAE-GAN), specialized for generating counterfactual data by controlling the data at-
tributes, consists of Gaussian VAE with additional Bernoulli latent variables, and GAN. Our contri-
butions are as follows.

• CDVAE-GAN can capture data features and data attributes separately in the latent space by utilizing
Gaussian VAE with auxiliary Bernoulli random variables.

• CDVAE-GAN is able to generate counterfactual data by altering the extracted attributes in the latent
space.

• High-quality data can be produced due to the nature of GAN.

• The experiment results on the CelebA dataset demonstrate the effectiveness of counterfactual data
generation of CDVAE-GAN.

The remainder of this paper is organized as follows. In Section 2, we introduce basic concepts
such as VAEs, GAN, and VAE-GAN. The proposed CDVAE-GAN is presented in Section 3, and the
empirical results of CDVAE-GAN are presented in Section 4. Finally, Section 5 concludes our work.
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(a) Gaussian VAE
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(b) Categorical VAE
Figure 2: Reparameterization trick of VAEs. The shaded nodes indicate the auxiliary random variables for the
reparameterization. (a) Gaussian VAE introduces auxiliary standard Gaussian random variable ε ∼ N(0, I). (b)
Categorical VAE introduces auxiliary Gumbel random variable g ∼ Gumbel(0, 1) for the repaarameterization,

and temperature τ > 0 for the continuous relaxation.

2. Preliminaries

2.1. Variational autoencoders

Variational autoencoder (VAE) (Kingma and Welling, 2014), a subtype of deep generative models,
assumes that (1) a latent variable z follows prior distribution p(z) = N(0, I); and (2) the observation
x is generated from the latent variable z with generative neural network pθ(x|z). However, due to
the intractability of true posterior distribution p(z|x) = (pθ(x|z)p(z))/

∫
pθ(x|z)p(z)dz where pθ(x|z)

is a neural network, we introduce an approximate posterior distribution qφ(z|x) = N(µ,Σ), called
inference neural network, to infer the latent variable z. Here, we derive the Gaussian parameters µ
and Σ with neural networks from input x, and we call this type of inference an amortized inference.
We often refer qφ(z|x) and pθ(x|z) as encoder and decoder, respectively, since qφ(z|x) extracts latent
representation z from input x, and pθ(x|z) reconstructs the original input x as x′. Figure 1 illustrates
the neural network architecture of VAE.

The objective function of VAE is called evidence lower bound (ELBO), which is a lower bound of
log-likelihood log p(x), followed by the intractability of the true posterior distribution p(z|x). Equation
(2.2) presents the negative ELBO of VAE, which becomes a loss function.

LVAE = LRec + LPrior (2.1)

= −Eqφ(z|x)
[
log pθ (x | z)

]
+ DKL

(
qφ (z | x) ||p(z)

)
. (2.2)

The loss function of VAE consists of two terms: (1) reconstruction loss term LRec = −Eqφ(z|x)[log pθ(x|z
)]; and (2) KL divergence term LPrior = DKL(qφ(z|x)||p(z)). Firstly, the reconstruction term enables the
encoder and the decoder to produce output x̂ as close as the input x. Regarding that, mean squared
error is used for the real-valued input, and cross-entropy loss is utilized in 0-1-scaled data. Secondly,
the KL divergence term acts as a regularizer for the approximate posterior distribution qφ(z|x) from
the prior distribution p(z).

Training VAE requires the estimation of the stochastic gradients, which can be derived by either
the score function method or the reparameterization trick (Joo et al., 2020b). Especially, VAE utilizes
a reparameterization trick in the training phase, i.e., instead of directly sampling z fromN(µφ,Σφ), we
alternatively sample ε fromN(0, I) and then compute z = µφ+ε×Σφ. Due to the alternative sampling,
we can compute the gradients ∂z/∂µφ and ∂z/∂Σφ. Hence, the gradient signal can flow to the front-end
of the neural network. It should be noted that different reparameterization tricks should be applied
regarding the selection of prior distributions (Nalisnick and Smyth, 2017; Joo et al., 2020a). Figure
2(a) presents the reparameterization trick of the Gaussian VAE.
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Figure 3: The neural network architecture of GAN.

Categorical VAE (Jang et al., 2016) assumes categorical distribution as a prior distribution of the
latent variable instead of the Gaussian in the usual VAEs, which we name Gaussian VAE in this paper.
Similar to the Gaussian VAE, categorical VAE also requires a reparameterization trick, which is tai-
lored to the categorical distribution. The authors of Jang et al. (2017) proposed the Gumbel-Softmax
trick, which approximates the categorical distribution with a special form of a continuous distribution.
The Gumbel-Softmax trick utilizes (1) auxiliary Gumbel samples g1, . . . , gk from Gumbel distribution
Gumbel(0, 1); (2) softmax function to transform real-value space into sum-to-one simplex; and (3) a
hyperparameter τ > 0, called temperature, to approximate one-hot values as τ → 0. Equation (2.3)
presents the Gumbel-Softmax transformation given Gumbel samples g1, . . . , gk, temperature τ, and
the categorical parameter π = (π1, . . . , πk):

yi =
exp

((
gi + log πi

)
/τ

)∑k
j=1 exp

((
g j + log π j

)
/τ

) for i = 1, . . . , k, (2.3)

and the transformed value y = (y1, . . . , yk) in the sum-to-one simplex has continuously relaxed one-hot
value. Finally, Figure 2(b) illustrates the Gumbel-Softmax reparameterization trick.

2.2. Generative adversarial networks

A generative adversarial network (Goodfellow et al., 2014) consists of two sub-networks: Generator
G and discriminator D. Generator G takes random input from the standard Gaussian distribution or the
standard uniform distribution, and generates fake data by neural networks. The goal of the generator
is to fool the discriminator into classifying the generated data as real, and the corresponding objective
function of the generator is as follows:

max
G

Ez∼p(z)
[
log (D (G(z)))

]
. (2.4)

Meanwhile, discriminator D classifies whether the input data is real or generated by the generator,
i.e., fake. The objective function of the discriminator is as follows:

max
D

Ex∼pdata

[
log (D(x))

]
+ Ez∼p(z)

[
log (1 − D (G(z)))

]
. (2.5)

Summing up, the final objective function of GAN is the following:

min
G

max
D

LGAN = min
G

max
D

Ex∼pdata

[
log (D(x))

]
+ Ez∼p(z)

[
log (1 − D (G(z)))

]
, (2.6)

and Figure 3 illustrates the neural network architecture of GAN.
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Figure 4: The neural network structure of VAE-GAN. The discriminator classifies if the data is real or fake
(reconstructed or generated by the decoder/generator). Meanwhile, the decoder/generator fools the discriminator

into classifying the reconstructed or generated data as real data.

The generator and the discriminator alternately train with the min-max game, which can be inter-
preted as finding a Nash equilibrium of a non-cooperative game between two adversarial players. It is
well-known that the global optimum of the generator becomes the true data distribution (Goodfellow
et al., 2014), i.e., pG = pdata where pG and pdata indicate the generator distribution and the true data
distribution, respectively. Following the work of Goodfellow et al. (2014), the optimal discriminator
D is

D∗G(x) = arg max
D

LGAN (2.7)

= arg max
D

Ex∼pdata

[
log (D(x))

]
+ Ez∼p(z)

[
log (1 − D(G(z)))

]
(2.8)

=
pdata(x)

pdata(x) + pG(x)
(2.9)

for any given fixed generator G. This consequently results in

min
G

Ex∼pdata

[
log

(
D∗G(x)

)]
+ Ez∼p(z)

[
log

(
1 − D∗G (G(z))

)]
(2.10)

= min
G

Ex∼pdata

[
log

(
D∗G(x)

)]
+ Ex∼pG(x)

[
log

(
1 − D∗G(x)

)]
(2.11)

= min
G

Ex∼pdata

[
log

pdata(x)
pdata(x) + pG(x)

]
+ Ex∼pG(x)

[
log

pG(x)
pdata(x) + pG(x)

]
(2.12)

= − log 4 + 2 · JS (pdata||pG) (2.13)
= − log 4, (2.14)

where JS (·||·) indicates the Jensen–Shannon divergence between two distributions, and the minimum
value is achieved when pG = pdata holds. Hence, the well-optimized generator is able to produce
realistic data. However, due to the difficulty of the adversarial training, the generator often fails to
achieve the optimum. Consequently, a line of work has been studied to overcome the problem of
difficult training in GAN (Radford et al., 2016; Salimans et al., 2016).

2.3. VAE-GAN

The authors of Larsen et al. (2016) introduce VAE-GAN, which combines VAE and GAN. Specif-
ically, VAE-GAN consists of three sub-networks: (1) an encoder of VAE, (2) a decoder of VAE,
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Figure 5: The neural network architecture of CDVAE-GAN. Compared to VAE-GAN (Larsen et al., 2016),
the proposed CDVAE-GAN introduces Bernoulli random variable zB to model the data attributes. Further, the at-
tribute information is disentangled from the latent feature zG by the additional regularization term DKL(y||qφ(zB|x))

in the objective function of CDVAE.

which also work as a generator of GAN, and (3) a discriminator of GAN. Firstly, the encoder acts
as the typical VAE encoder, and it extracts the latent representation of input data. Secondly, the
decoder/generator plays the role of the VAE decoder as well as the GAN generator. By taking the
encoded latent representation from the VAE encoder, it decodes the latent values to the original data
space. Meanwhile, it also generates data from random noise as a regular GAN generator. Finally, the
discriminator classifies if the data is real or fake. Here, the reconstructed data in the VAE perspective
and the generated data in the view of the GAN generator are treated as fake data for the discriminator.
The model architecture of VAE-GAN is illustrated in Figure 4. Since our proposed model is an ex-
tension of VAE-GAN, we introduce the detailed model structure and the loss function of VAE-GAN
in the next section.

3. Methodology

In this section, we introduce counterfactual disentanlged variational autoencoder generative adver-
sarial networks (CDVAE-GAN), an application of VAE-GAN (Larsen et al., 2016) in counterfactual
data generation. Figure 5 illustrates the overview of the neural network architecture of CDVAE-GAN,
which consists of an encoder, a decoder/generator, and a discriminator, as VAE-GAN. It should be
noted that while the proposed CDVAE-GAN has a similar model structure to CVAE-GAN (Bao et al.,
2017), the way of using the auxiliary information is different. In detail, CVAE-GAN utilizes a single
category of celebrity, for example, Hathaway, Leonardo, Cheryl Hines, Jet Li, etc. However, the pro-
posed CDVAE-GAN utilizes multiple attributes of the portrait, such as bangs, black hair, blond hair,
gender, mustache, mouth slightly open, smiling, etc. Consequently, this difference results in a dif-
ferent model purpose, where CVAE-GAN cannot produce counterfactual generation on the attributes.
Hence, the two works cannot be directly compared in terms of the counterfactual generation.

3.1. Model description
3.1.1. Encoder

Encoder E of CDVAE-GAN is designed for capturing the latent representation of the existing (real)
data. Compared to the typical Gaussian VAE, we additionally utilize discrete latent variables to pro-
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duce disentangled latent representations following JointVAE (Dupont, 2018). Particularly, we adopt
multiple Bernoulli random variables to (1) directly model the data attributes; (2) separate the attribute
information from extracted features of the Gaussian VAE; and (3) control the attributes in the latent
space to create the counterfactual data. By taking the real data as input, the CDVAE-GAN encoder out-
puts (1) low-dimensional latent representation zG ∈ Rm sampled from Gaussian distribution N(µ,Σ),
which is the approximate posterior distribution qφ(zG |x) that captures the feature of the data; and (2)
latent attribute zB ∈ {0, 1}k sampled from Bernoulli distribution Ber(π) = qφ(zB|x), which reflects the
data attributes.

zG ∼ N (µ,Σ) , zB ∼ Ber(π) where µ,Σ, π = Eφ(x). (3.1)

To extract data features, which are distinguished from the data attributes, we utilize the known
data attributes y ∈ {0, 1}k of a value zero or one, which are given together with input x. Afterward, we
add the forward KL divergence term DKL(y||qφ(zB|x)) in the loss function as a regularizer.

The loss function from the encoder, which needs to be minimized, is the following:

LDiv = LPrior + λBLB (3.2)

= DKL

(
qφ (zG | x) ||p(zG)

)
+ λB · DKL

(
y||qφ (zB | x)

)
(3.3)

= −
1
2

m∑
i=1

(
µ2

i + σ2
i − log

(
σ2

i

)
− 1

)
+ λB ·

k∑
j=1

(
y j log

y j

π j
+

(
1 − y j

)
log

1 − y j

1 − π j

)
(3.4)

→ −
1
2

m∑
i=1

(
µ2

i + σ2
i − log

(
σ2

i

)
− 1

)
− λB ·

k∑
j=1

(
y j log π j +

(
1 − y j

)
log

(
1 − π j

))
(3.5)

as y→ 0 or 1 .

The approximation in equation (3.5) is due to lima→0+ a log a = 0. While we can utilize the reverse
KL divergence instead of the forward KL, the reverse KL divergence is intractable in the proposed
Bernoulli case. Hence, we utilize the forward KL divergence instead as the attribute deviating regular-
izer. It is well-known that optimizing forward and reverse KL divergences results in mode-covering
property and mode-seeking property, respectively (Kim et al., 2021). However, when the target dis-
tribution and the learnable distribution are both simple, such as in the Bernoulli case, optimizing the
forward and reverse KL divergence results in the same optimal learnable distribution. In our experi-
ment, we take λB = 1.0 as a hyperparameter.

Without the additional Bernoulli latent variable and the corresponding forward KL divergence
regularizer LB, the loss function becomes LPrior, and the encoder structure reduces down to the original
VAE-GAN encoder. However, since the additional regularizer LB enforces π to capture the effect of
data attribute y, µ and Σ are discriminated from the data attribute information. Therefore, the sampled
latent value zG from N(µ,Σ) can have a disentangled representation, which is independent of data
attributes y.

3.1.2. Decoder/generator

As a decoder of VAE. Decoder G of CDVAE-GAN takes the latent variable z as an input, which con-
sists of the latent feature zG as well as the latent attribute zB. From the encode latent value z = (zG, zB),
the decoder reconstructs original input as pθ(x|zG, zB). Since the CDVAE-GAN encoder is designed
to have the disentangled latent representation between the data feature and the data attribute, the de-
coder generates (1) general data structure from latent feature zG, and (2) specific structure from latent
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attribute zB where the data attribute is embedded. Here, the latent attribute zB can act as conditional
information for the VAE decoder. Hence, the decoder part resembles the decoder of conditional VAE
(Sohn et al., 2015). In other words, the attribute factor and the output data are in a causal relationship
in the generative model view. Without the latent attribute variable zB, the decoder/generator structure
reduces to the original VAE-GAN decoder/generator. The objective of the decoder is minimizing the
reconstruction loss, which can be written as follows:

LRec = −EzG ,zB∼qφ(zG ,zB | x)
[
log pθ (x | zG, zB)

]
. (3.6)

As a generator of GAN. At the same time, the CDVAE-GAN decoder also acts as the generator so
that it takes (1) random Gaussian noise sampled from N(0, I) = p(zG), which is a prior distribution
of the latent variable zG; and (2) random Bernoulli sample from Ber(η) = p(zB). In our experiment,
we simply take the Bernoulli prior as η = 0.5. Such generated data, as well as the reconstructed data,
do not exist in the training dataset. Hence, they are considered fake data, which are trying to fool
discriminator D.

3.1.3. Discriminator

Discriminator D of CDVAE-GAN classifies whether the data is real or fake. In the discriminator’s
view, all data decoded or generated by decoder/generator G are treated as fake data. Hence, dis-
criminator D and the VAE, which consists of encoder E and decoder/generator G, are adversarially
optimized through a min-max game with the following objective functions:

min
E,G

max
D

LGAN where (3.7)

LGAN = Ex∼pdata

[
log D(x)

]
(3.8)

+ EzG ,zB∼p(zG ,zB)
[
log (1 − D(G(zG, zB)))

]
(3.9)

+ Ex∼pdata

[
log (1 − D(G(E(x))))

]
. (3.10)

Here, equations (3.8), (3.9), and (3.10) results from true data x, the generated data x̃, and the recon-
structed data x′, respectively.

3.2. Training process

Throughout Section 3.1, the final objective function of CDVAE-GAN is as follows:

LCDVAE-GAN = LDiv + LRec + LGAN . (3.11)

When training the neural network parameter of the proposed CDVAE-GAN model, we alternately
update the encoder, the decoder/generator, and the discriminator since each network’s parameters
are linked to different loss components. Among three terms, which consist of the total objective
LCDVAE−GAN , (1) encoder E minimizes LDiv and LRec, (2) decoder/generator G minimizes LRec and
LGAN , and (3) discriminator D maximizes LGAN . While training decoder/generator G, we additionally
utilize a scale factor γ to produce more accurate reconstructions of the data patterns in the training
dataset for deceiving the discriminator (Gatys et al., 2016). A greater value of γ > 1 strengthens the
reconstruction quality; therefore, the reconstructed data resembles the original input more. We set
γ = 15 as a hyperparameter in our experiment. The detailed training procedure is shown in Algorithm
1.
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Algorithm 1 : CDVAE-GAN model training process.
1: θE , θG, θD . Neural network parameters
2: repeat
3: z← E(x) . Encode input x
4: LDiv = DKL(qφ(zG |x)||p(zG)) + λB · DKL(y||qφ(zB|x)) . Data attribute y ∈ {0, 1}k

5: x′ ← G(z) . Decode z, i.e., reconstruct x′

6: LRec = −EzG ,zB∼qφ(zG ,zB |x)

[
log pθ(x|zG, zB)

]
. Minimize reconstruction loss

7: z̃ = {z̃G, z̃B} . Draw random noise z̃G ∼ N(0, I), z̃B ∼ Ber(0.5)
8: x̃← G(z̃) . Generate x̃
9: LGAN = Ex∼pdata

[
log D(x)

]
. Loss from real data

+EzG ,zB∼p(zG ,zB)

[
log

(
1 − D(G(zG, zB))

)]
. Loss from random noise

+Ex∼pdata

[
log

(
1 − D(G(E(x)))

)]
. Loss from reconstruction

10: Update parameters according to gradients.
11: θE += −∇θE (LDiv + LRec) . Minimize LCDVAE−GAN with respect to E
12: θG += −∇θG (γLRec + LGAN) . Minimize LCDVAE−GAN with respect to G
13: θD += ∇θD (LGAN) . Maximize LCDVAE−GAN with respect to D
14: until convergence
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Figure 6: Counterfactual data generation process of CDVAE-GAN.

3.3. Counterfactual data generation

From the input data, the proposed CDVAE-GAN is able to generate counterfactual data with respect
to a certain data attribute. In the CDVAE-GAN model structure, the latent Bernoulli variable zB

plays a key role in counterfactual data generation. The latent Bernoulli variable zB models attribute
information due to the regularizer term DKL(y||qφ(zB|x)) contained in the loss function, so it is possible
to handle the characteristics of specific attributes by controlling the corresponding latent Bernoulli
variables. For example, portrait x without bang hair (ybang = 0) is encoded as the latent value z =

(zG, zB). Because of the regularizer term DKL(y||qφ(zB|x)), which enforces the auxiliary Bernoulli
variables to capture the data attributes, the latent attribute corresponding to the bang hair tends to have
zero value (zbang

B = 0). Then, we can generate the counterfactual image xc f by flipping the value of
zB into one (1 − zbang

B = 1). Afterward, the well-trained decoder/generator will activate the effect of
bang hair while generating the portrait xc f through the decoder/generator G. Figure 6 illustrates the
counterfactual image generation process when an input image is given.
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Table 1: The detailed network structures and the hyperparameter values of CDVAE-GAN used in our experim
ents

Encoder E Decoder/Generator G Discriminator D Hyperparameters
5 × 5 64 Conv2d 8 × 8 × 512 FC 5 × 5 64 Conv2d learning rate of E: 3e-4

BatchNorm2d BatchNorm2d BatchNorm2d learning rate of G: 3e-4
ReLU ReLU LeakyReLU learning rate of D: 3e-5

5 × 5 128 Conv2d 5 × 5 512 ConvTr2d 5 × 5 128 Conv2d Optimizer: RMSProp
BatchNorm2d BatchNorm2d BatchNorm2d batch size: 32

ReLU ReLU LeakyReLU λB = 1.0
5 × 5 256 Conv2d 5 × 5 256 ConvTr2d 5 × 5 256 Conv2d γ = 15.0

BatchNorm2d BatchNorm2d BatchNorm2d τ = 0.1
ReLU ReLU LeakyReLU

5 × 5 512 Conv2d 5 × 5 128 ConvTr2d 5 × 5 512 Conv2d
BatchNorm2d BatchNorm2d BatchNorm2d

ReLU ReLU LeakyReLU
2048 FC 5 × 5 64 ConvTr2d 5 × 5 512 Conv2d

BatchNorm1d BatchNorm2d BatchNorm2d
ReLU ReLU LeakyReLU

1024 FC 5 × 5 3 ConvTr2d 2048 FC
1024 FC Tanh LeakyReLU

BatchNorm1d 1 FC
ReLU Sigmoid

µ Σ π

100 FC 100 FC 38 FC
Exp Sigmoid

4. Experiment

4.1. Experiment setting

We conduct experiments on the CelebA dataset (Liu et al., 2015) to verify the performance of the
proposed CDVAE-GAN. CelebA dataset consists of 202, 599 colored images of celebrities with 40
different binary attribute annotations. Among 40 data attributes, we utilized 38 attributes in our exper-
iment where wearing necktie and young attributes are excluded. To generate counterfactual images,
we choose the following attributes: Bangs, black hair, blond hair, male (gender), mustache, mouth
slightly open, and smiling. The original CelebA dataset has 178 × 218 pixel size; however, we scale
down to 64 × 64 in our experiment for fair comparisons against VAE-GAN (Larsen et al., 2016)
experiments. We randomly divide the dataset into 1 : 1 ratios for the train/test data split.

We compare the proposed CDVAE-GAN against VAE and VAE-GAN (Larsen et al., 2016). The
VAE baseline model has the same VAE structure as the proposed CDVAE-GAN, which utilizes the
Gaussian VAE and additional Bernoulli random variable. In other words, the difference between VAE
and CDVAE-GAN is whether the GAN part exists or not. Hence, the comparison between VAE and
CDVAE-GAN can show the efficacy of the GAN module. Meanwhile, the other baseline, the VAE-
GAN, which is introduced in Section 2.3, has both the VAE part and the GAN part in the model
structure. However, there are no Bernoulli random variables and the corresponding regularizer in the
loss function. Hence, the VAE-GAN cannot model the data attribute directly in the latent space of the
VAE. Instead, the VAE-GAN calculates and utilizes the mean vector of latent values from true data
that contains specific attributes or not, for counterfactual data generation. Table 1 presents the detailed
neural network structure of CDVAE-GAN that we utilized in the experiment.
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Figure 7: Counterfactual image generation of the proposed CDVAE-GAN and the baseline models with CelebA
dataset. The first row shows the input images of the encoder modules, and the second row presents the recon-
structed images from the decoder modules. The rest of the rows exhibit counterfactual images for the selected

attributes of CelebA dataset.

4.2. Qualitative result

We generate counterfactual images from the existing portrait with VAE, VAE-GAN, and the proposed
CDVAE-GAN. Figure 7 lists the generated counterfactual images by controlling the 7 attributes bangs,
black hair, blond hair, male (gender), mustache, mouth slightly open, and smiling of the test instances.
In other words, once we obtain the latent representation zG and the latent attribute zB from test data
x, the counterfactual image is generated by flipping the latent attribute 1 − zB, as we discussed in
Section 3.3. For the VAE, the existence of the Bernoulli attribute random variables enables altering
the corresponding attribute in the image. However, blurry images are generated in general due to the
nature of VAE. Meanwhile, as in the VAE-GAN (Larsen et al., 2016), we can obtain clear images with
high fidelity by adding the GAN discriminator after the VAE decoder. However, due to the indirect
computing process in the counterfactual generation, it fails to reflect data attributes in general, and
it shows more correlations among attributes, which is undesirable. Compared to the baselines, the
proposed CDVAE-GAN successfully generates counterfactual images with high fidelity. It is because
of the effect of the regularizer DKL(y||qφ(zB|x)) in the loss function, which (1) disentangles the attribute
information zB from the latent feature zG; and (2) zB is controllable as a latent variable in binary. We
also provide qualitative results of the proposed CDVAE-GAN with high-resolution images of pixel
size 128 × 128 in Figure 8.
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Figure 8: Counterfactual high-resolution image generation of the proposed CDVAE-GAN with (left) test data
input for encoder E, and (right) random sample input for decoder/generator G.

4.3. Quantitative result

We use two measures to compare the performance of CDVAE-GAN against the baselines quantita-
tively. The first measure is the Frechet inception distance (FID) score (Heusel et al., 2017) which
measures the quality and diversity of generated images. The FID score evaluates the divergence be-
tween the real and generated data distribution to measure how realistic the generated data are. Hence,
a lower FID score is better. The detailed equation of computing the FID score is as follows:

d
(
N(µ,Σ),N(µ′,Σ′)

)2
=

∥∥∥µ − µ′∥∥∥2
2 + tr

(
Σ + Σ′ − 2

(
Σ

1
2 Σ′Σ

1
2

) 1
2

)
, (4.1)

where Gaussian distributions N(µ,Σ) and N(µ′,Σ′) are fitted from the real and generated datasets.
Especially, we utilize pre-trained Inception-v3 (Szegedy et al., 2016) to extract image feature vectors,
and then compute the FID score by following the work of Heusel et al. (2017). Hence, the FID score
is computed in the Inception-v3 image feature space. The proposed CDVAE-GAN marked the lowest
FID score in the comparison, as listed in Table 2. The second measure is classification accuracy with
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Table 2: FID score from counterfactually generated samples for the proposed CDVAE-GAN and the baselines

VAE VAE-GAN CDVAE-GAN
122.86 48.46 34.24

The lower is, the better the FID score. The best results are marked in bold.

Table 3: Attribute classification accuracy for the generated images from the proposed CDVAE-GAN and the
baselines

Attribute Train Test VAE VAE-GAN CDVAE-GAN
Bang 92.9% 87.2% 52.4% 66.6% 73.79%

Black hair 79.5% 78.9% 52.4% 68.2% 70.03%
Blond hair 85.9% 85.1% 60.1% 62.4% 71.37%

Male 88.3% 87.5% 52.2% 51.3% 72.37%
Mustache 90.4% 86.0% 81.9% 81.3% 83.08%

Mouth slightly open 77.9% 76.0% 55.8% 70.3% 75.47%
Smiling 89.9% 88.4% 72.9% 75.0% 81.62%

We also provide the accuracies from the train/test dataset for reference to the generated image quality. The best results are
marked in bold.

an auxiliary neural network classifier to evaluate whether the generated image successfully reflects
the counterfactual attribute or not. We choose to use neural network classifiers since (1) we can train
end-to-end multiple attribute-wise classifiers simultaneously, and (2) the neural network classifiers
are simple and powerful. The classification result is listed in Table 3. The classifier is trained with
the training data, and we provide the test accuracy together to show its quality. CDVAE-GAN also
outperforms the baselines in accuracy. Particularly, it marked similar accuracy compared to the test
dataset in several attributes such as mustache or mouth slightly open, and it means that the generated
images are enough to deceive the machine learning classifiers.

5. Conclusion

This paper proposes CDVAE-GAN for counterfactual data generation with disentangled represen-
tation learning. The proposed CDVAE-GAN consists of Gaussian VAE with additional Bernoulli
latent variables and GAN, and the VAE and the GAN are competitively optimized through adversarial
training. While the Gaussian VAE produces low-dimensional representation in the latent space, the
Bernoulli latent variables disentangly capture the data attributes. Since each data attribute is separately
propagated to the Bernoulli latent variables, we can manipulate the latent values by flipping zeros and
ones. In that manner, we can generate non-existing counterfactual samples with the VAE decoder, i.e.,
the CDVAE-GAN generator. We conducted the experiment on the CelebA dataset, and the following
attributes are utilized for the counterfactual sample generation: Bangs, black hair, blond hair, male
(gender), mustache, mouth slightly open, and smiling. The visualized generated counterfactual sam-
ples are qualitatively realistic, and the additional neural network classifier also qualitatively supports
that the generated samples successfully mimic the opposite attributes. Hence, the proposed model can
be widely utilized for generating unseen data while in the training phase or non-existing data in the
real world.

While the proposed CDVAE-GAN can generate counterfactual data based on the inputs, several
limitations exist. First, only limited attributes can be accessed in the real world, even though there are
numerous factors in observations. For example, while the CelebA dataset has multiple attributes that
explain the data instances well, there can be more un-tagged attributes such as clothing style, clothing
color, background color, etc. Second, hidden causal relationships exist between attributes, such as
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gender→ mustache, while the proposed CDVAE-GAN assumes all attributes are independent. Since
these are beyond the scope of the proposed CDVAE-GAN, it results in an undesired phenomenon in
the counterfactual generation, changing non-attribute factors such as clothing color or background
color. Hence, in future work, we can further consider embedding the detailed causality factors among
data attributes (Yang et al., 2021) in counterfactual data generation.
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