• 제목/요약/키워드: Non-Fragile Control

검색결과 27건 처리시간 0.025초

Delayed Feedback Non-fragile H_inf Control for Uncertain Time-Delay Systems

  • Kwon, Ohmin;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.59.4-59
    • /
    • 2002
  • $\textbullet$ Introduction-Previous results and motivation of this paper $\textbullet$ Problem Statements-The system considered and the objective of this paper $\textbullet$ Main Results-The Sufficient Condition for 8 delayed feedback non-fragile H_inf control $\textbullet$ Numerical Example-The effectiveness of the proposed method $\textbullet$ Conclusion

  • PDF

Torque Sensorless Decentralized Position/Force Control for Constrained Reconfigurable Manipulator via Non-fragile H Dynamic Output Feedback

  • Zhou, Fan;Dong, Bo;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.418-429
    • /
    • 2018
  • This paper studies the decentralized position/force control problem for constrained reconfigurable manipulator without torque sensing. A novel joint torque estimation scheme that exploits the existing structural elasticity of the manipulator joint with harmonic drive model is applied for each joint module. Based on the estimated joint torque and dynamic output feedback technique, a decentralized position/force control strategy is presented. In order to solve the problem of controller parameter perturbation, the non-fragile robust technique is introduced into the dynamic output feedback controller. Subsequently, the stability of the closed-loop system is proved using the Lyapunov theory and linear matrix inequality (LMI) technique. Finally, two 2-DOF constrained reconfigurable manipulators with different configurations are applied to verify the effectiveness of the proposed control scheme in numerical simulation.

Non-fragile Guaranteed Cost Control of Uncertain Nonlinear Systems with Time-varying Delays in State and Control Input (시변 시간 지연을 갖는 불확실한 비선형 시스템의 비약성 보장 비용 제어)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권3호
    • /
    • pp.459-465
    • /
    • 2012
  • In this paper, we present a non-fragile guaranteed cost control design method for uncertain nonlinear systems with time varying delays in state and control input, even though the controller gain is perturbed. The uncertain nonlinear term in the systems is norm bounded and the linear matrix inequality(LMI) optimization method is employed as a stability analysis of the systems. We design a robust controller and show the asymptotical stability of uncertain time-varying systems based on Lyapunov method. Also, we guarantee a specific level of performance of the systems. The simulations are carried out to demonstrate the effectiveness of the proposed method.

Non-fragile robust guaranteed cost control for descriptor systems with parameter uncertainties (변수 불확실성 특이시스템의 비약성 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제44권1호
    • /
    • pp.59-66
    • /
    • 2007
  • In this paper, we consider the non-fragile robust guaranteed cost state feedback controllers design method for descriptor systems with parameter uncertainties and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile robust guaranteed cost controller, the measure of non-fragility in controller, the upper bound of guaranteed cost performance measure to minimize the guaranteed cost are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile robust guaranteed cost controller satisfies the asymptotic stability and minimizes the guaranteed cost for the closed loop descriptor systems with parameter uncertainties and controller fragility. Finally, a numerical example is given to illustrate the design method.

Delay-dependent Robust and Non-fragile Stabilization for Descriptor Systems with Parameter Uncertainties and Time-varying Delays (변수 불확실성과 시변 시간지연을 가지는 특이시스템의 지연 종속 강인 비약성 안정화)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권10호
    • /
    • pp.1854-1860
    • /
    • 2008
  • In this paper, we deal with the problem of delay-dependent robust and non-fragile stabilization for descriptor systems with parameter uncertainties and time-varying delays on the basis of strict LMI(linear matrix inequality) technique. Also, the considering controller is composed of multiplicative uncertainty. The delay-dependent robust and non-fragile stability criterion without semi-definite condition and decomposition of system matrices is obtained. Based on the criterion, the problem is solved via state feedback controller, which guarantees that the resultant closed-loop system is regular, impulse free and stable in spite of all admissible parameter uncertainties, time-varying delays, and controller fragility. Numerical examples are presented to demonstrate the effectiveness of the proposed method.

Nonfragile Guaranteed Cost Controller Design for Uncertain Large-Scale Systems (섭동을 갖는 대규모 시스템의 비약성 성능보장 제어기 설계)

  • Park, Ju-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제51권11호
    • /
    • pp.503-509
    • /
    • 2002
  • In this paper, the robust non-fragile guaranteed cost control problem is studied for a class of linear large-scale systems with uncertainties and a given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design a state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties and controller gain variations. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. A numerical example is given to illustrate the proposed method.

H State Estimation of Static Delayed Neural Networks with Non-fragile Sampled-data Control (비결함 샘플 데이타 제어를 가지는 정적 지연 뉴럴 네트웍의 강인 상태추정)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제66권1호
    • /
    • pp.171-178
    • /
    • 2017
  • This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique, the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically stable with $H_{\infty}$ performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.

Robust and Non-fragile H$\infty$ Output Feedback Controller Design

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.1-75
    • /
    • 2001
  • In this paper, we provide the synthesis of non-fragile H$\infty$ output feedback controllers for linear systems with affine parameter uncertainties, and dynamic output feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ output feedback controller, and the region of controllers which satisfies non-fragility are presented. Also using some change of variables and Schur complements, the obtained condition to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed ...

  • PDF

(Robust Non-fragile $H^\infty$ Controller Design for Parameter Uncertain Systems) (파라미터 불확실성 시스템에 대한 견실 비약성 $H^\infty$ 제어기 설계)

  • Jo, Sang-Hyeon;Kim, Gi-Tae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제39권3호
    • /
    • pp.183-190
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile H$\infty$ state feedback controllers for linear varying systems with affine parameter uncertainties, and static state feedback controller with structured uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile H$\infty$ static state feedback controller, and the set of controllers which satisfies non-fragility are presented. The obtained condition can be rewritten as parameterized Linear Matrix Inequalities(PLMls), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. However, in contrast to LMIs, PLMIs feasibility problems involve infinitely many LMIs hence are inherently difficult to solve numerically. Therefore PLMls are transformed into standard LMI problems using relaxation techniques relying on separated convexity concepts. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of controller gain variations within a degree.

Robust and Non-fragile H Controller Design Algorithm for Time-delayed System with Randomly Occurring Uncertainties and Disturbances ) (임의발생 불확실성 및 외란을 고려한 시간지연시스템의 강인비약성 H 제어기 설계 알고리듬)

  • Yang, Seung Hyeop;Paik, Seung Hyun;Lee, Jun Yeong;Park, Hong Bae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제52권12호
    • /
    • pp.89-98
    • /
    • 2015
  • This paper provides a robust and non-fragile $H_{\infty}$ controller design algorithm for time-delayed systems with randomly occurring polytopic uncertainties and disturbances. First, we design time-delayed system considering randomly occurring uncertainties and disturbances. Next, The sufficient condition for the existence of robust and non-fragile $H_{\infty}$ controller is presented by LMI(linear matrix inequality) using Lyapunov stability analysis and $H_{\infty}$ performance measure. Since the obtained condition can be expressed as a PLMI(parameterized linear matrix inequality) by changes of variables and Schur complement, all solutions including controller gain, degrees of controller satisfying non-fragility, $H_{\infty}$ norm bound ${\gamma}$ can be calculated simultaneously. Finally, numerical examples are given to illustrate the performance and the effectiveness of the proposed robust and non-fragile $H_{\infty}$ controller compared with the deterministic uncertainty model even though there exists randomly occurring uncertainties, disturbances and time delays.