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비결함 샘플 데이타 제어를 가지는 정적 지연 뉴럴 네트웍의 강인 

상태추정  

∞ State Estimation of Static Delayed Neural Networks with Non-fragile 

Sampled-data Control
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Abstract -  This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other 

studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state 

estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique, 

the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically 

stable with ∞  performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.

Key Words : State estimation, Neural networks, Time-varying delay, Non-fragile sampled-data control

† Corresponding Author : Dept. of Electronic Engineering, 

Kyungpook National University, Republic of Korea.

      E-mail : moony@knu.ac.kr

* Dept. of Electrical Engineering, Yeungnam University, Republic 

of Korea.

Received : November 25, 2016; Accepted : December 15, 2016

1. Introduction

In the past decades, static neural networks, where the 

neuron states are utilized as basic variables to depict the 

dynamical evolution rule, have been received much attention 

due to their successful applications in a variety of areas 

such as associative memory and combinatorial optimization. 

Some typical examples of the static neural networks are the 

brain-state-in-a box neural networks and the projection 

neural networks, etc [1], [2]. It should be pointed out that 

static neural networks are different from the local field 

neural networks where the local field states of neurons are 

taken as basic variables. On the other hand, time delay is 

often encountered in neural networks.

The existence of time delay may result in poor 

performance such as instability and oscillation of the 

underlying neural networks. Up to now, stability of static 

neural networks has been widely discussed and various 

stability conditions have been obtained in the literatures 

[3-6].

In practice, it is impossible or very expensive to 

completely acquire the state information of all neurons in 

neural networks due to their complicated structure. 

However, in some engineering applications, it is needed to 

know these information in advance to achieve specific 

objectives. Recently, some results on state estimation of 

static neural networks have been derived [7-11]. 

A lot of control methods have recently been applied to the 

design of a state estimator for neural networks. Nowadays, it 

is important to consider that the control input signals are 

discontinuous due to the development of high-performance 

computing technology and modern digital communication 

technique. As a result, the controller design problem using 

sampled-data has received much attention and many 

important results have been presented in recent years.

For example, the state estimation problem for neural 

networks with a time-varying delay via stochastic sampled- 

data control was studied in [12]. It is worth mentioning that, 

in the above mentioned papers, the communication between 

the neural networks and the estimator is assumed to be 

perfect. However, inaccuracies or uncertainties do occur in 

sampled-data controller implementation, and thus the ideal 

assumption may not be satisfied.

The controllers are very sensitive to their own 

uncertainties (implementation errors) and this is called 

fragility problem of controllers. In this regard, the non- 

fragile controllers have been employed for dynamical 

networks to tolerate some uncertainties [13-15]. ∞  state 
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estimation of static neural networks with time varying delay 

via non-fragile sampled-data controller has not been 

investigated by any researchers.

Motivated the above discussion and facts, the design 

problem of the state estimator for delayed static neural 

networks is investigated in this paper. Unlike previous 

studies, the states of the proposed static neural networks 

are estimated using the time-varying sampling with 

uncertainties. By constructing the augmented Lyapunov 

function, with the help of employing integral inequalities 

and convex combination method to deal with some cross 

terms, some sufficient conditions are derived such that the 

estimating error system is globally asymptotically stable with 

a guaranteed ∞  performance, and the gain matrix of the 

state estimator can be easily obtained by solving a convex 

optimization problem under the constraint of LMIs. A 

numerical example is given to demonstrate the effectiveness 

of the proposed method.

Notations: Throughout this paper, I denotes the identity 

matrix with appropriate dimensions,   denotes the n 

dimensional Euclidean space, and  ×   is the set of all m 

n real matrices, For symmetric  matrices A and B, the 

notation   (respectively, ≥ ) means that the matrix 

   is positive definite (respectively, non-negative). 

diag{...} denotes the block diagonal matrix.

2. Problem Statement

Consider the following static neural network with time delay 

and noise disturbance.

          

  

  

    (1)

where      
 ∈   is the state vector 

of the model,  corresponds to the number of neurons, 

∈   denotes a noise disturbance belonging to 

ℒ ∞ , ∈  is the network output measurement 

          is a diagonal matrix,     is 

the delayed connection weight matrix,

            
 ∈   is the 

neuron activation function ,         
  is a constant 

external input vector,    and  H are known real 

constant matrices with compatible dimensions, and  is a 

the time-varying delay satisfying

            ≤≤  ≤                   (2)

where  and  are known constants. 

Assumption 1 Each neuron activation function  · is 

continuous and bounded, and satisfy the following 

condition:

    
 ≤  

      
≤ 



      ∈   ≠     

           (3)

where 
  and 

  are known real scalar.

The following full-order observer for the neural network is 

proposed:

    
       

  

       (4)

where ∈  is the estimation of the neuron state

 ∈  is the estimated output vector, and ∈  

is the control input.

 Define the error signal as      , and the 

output signal as      . Then, the error system 

can be represented as

            

  

     (5)

where          

In this paper, the non-fragile sampled-data control law is 

expressed as

            ∆  
 

  ∆  

 ≤ ≤      

          (6)

where K is the gain matrix of the feedback controller to be 

determined later, tk is the updating instant time of the 

Zero-Order-Hold (ZOH) and the sampling interval satisfies 

    ≤ .

Remark 1 For actual systems, parameter perturbation is 

unavoidable. This phenomenon may affect the stability and 

the performance of the systems  if they do not be dealt 

with appropriately. Therefore, the ∞  no non-fragile 

sampled-data  state estimation  for static neural  networks 

is consider in this paper, which has never been considered 
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of static neural networks.

Assumption 2  The uncertainties ∆   represents the 

possible controller gain fluctuations. It is assumed that 

∆  has the following form:

               ∆   ∆                     (7)

where   and    are known constant matrices with 

appropriate dimensions, and ∆  is unknown matrix 

function satisfying ∆ ∆  ≤  .

Using input delay method [12], error system (5)  can be 

represented as:

    


  ∆
  

  

      (8)

where      ∈  and   .

The  ∞  performance state estimation problem is stated 

as follows.  For a prescribed level > 0  of noise attenuation, 

it is to find a suitable estimator  (4) such that:

1) the estimation error system (5) with    is globally 

asymptotically stable;

2) under the zero-initial condition

  ∥∥  ∥∥                       (9) 

 holds  for  all  non-zero  ≤ ℒ ∞ , where

∥∥  





∞

   . 

3. Main Results

In this section, a design problem of state estimation for 

delayed static neural networks using non-fragile 

sampled-data controller will be investigated. The following 

lemmas are essential to derive  the  main  results.

Lemma 1  [16]  For  any constant positive definite matrix  

 ∈×  and   ≤  ≤ ,  the following inequalities 

hold

   




   ≤        

Lemma 2  (Lower bounds lemma [17]) Let    

      →  have positive values in an open 

subset  of  . Then, the reciprocally convex combination 

of   over  satisfies

min          




  



   max 
 ≠ 



subject to

      →    ≅     

 
≥ 

Lemma 3 [18] For given matrix  , the following 

inequality holds for all continuously differentiable function 

 in   ∈  :

        


 

≤   ΩΩ

where Ω     

 






Theorem 1 For given scalars and > 0, error system (8) is  

asymptotically  stable,  if there exist   ×   matrices  

   × matrices              ,  

diagonal matrices                

any  ×  matrices   ×     matrix  ,  ×  matrix  

and a scalar      such that the following LMIs are satisfied 

for     

Ω          


      


    
      



 
  

  
 



 
  




 




 





  




 




 

















  















 


       



 

  
 




  
                    (10)

        



 


 

 

≥ 



 


 

 

≥                  (11)
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where 

      

            

        

    

and  ∈    ×    means the block entry 

matrices, e.g,
    where

         

      



 
   



 

 
  

   



    

       

Moreover, the non- fragile sampled- data controller gain is 

given by    

Proof Choose a Lyapunov functional candidate as

                    
  



                   (12)

where

  




































 






 








 






 




 






  







 




  







 


Taking the time-derivative of     along the 

trajectory of system (8) yields

 
























 
 



          (13)

 ≤ 

 








 






 




















 






  (14)

    

  

         (15)

  
  



 


       (16)

  



  


 


       (17)

Based on Lemmas 1, 2 and 3, one can obtain




 




≤


 


  







≤
 














 
 














≤ - 

 





 


 

 




 ×

     

  




                      (18)

and




 




 





  


 




≤ 



  







  



 
 


 












 







 


 












 






≤ 



 







 

                           (19)

where 

  





 

    

    
 







    

    
 







 



 


 

 
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On the other hand, according to (8), for any appropriately 

dimensioned matrix M, the following equation holds

   

         

       (20)

Furthermore, the diagonal matrix,   

    we can achieve the following 

inequalities,




 ≥ 



        (21)

 ≥           (22)

From (7), the following inequality holds

 ≤         (23)

and so there exists a positive scalar   satisfying

          ≥         (24)

To establish the ∞  performance for the system, we define

       


∞

                  (25)

Under the zero-initial condition, it is obvious that

     for any non-zero  ∈ ℒ ∞ we can 

get

∞ ≤


∞

    

→∞    

≤


∞      

        (26)

Then, combined with (13)-(26) and define   , we 

have

               

         ≤                         (27)

which completes the proof.

Consider the particular case of the controller scheme (6)  

where there is  in  input  uncertainty, estimating  error 

system (8) reduces to

      
 

                                          (28)

Based on Theorem 1, the following corollary follows 

immediately.

Corollary 1 For given scalars  and   , error system (28)  

is  asymptotically  stable,  if  there  exist ×  matrices  

   ×, matrices            

diagonal matrices,          

any ×  matrices    × matrix   and × matrix 

G such that the following LMIs are satisfied for   

Ω        


 








   








  







 

  


  









 




 




 









 




 




 





















  









              




  



   





  

                    (29)

         



 




 
≥ 




 




 
≥                (30)

where

   




  











        

   

and   ∈   ×   means the block entry

matrices, e.g., 
     where

    

 


 





 
 







 
  

Moreover, the sampled-data controller gain is given by 



전기학회논문지 66권 1호 2017년 1월

176

    .

Remark 2 Comparing with the existing works for the state 

estimation of static neural networks [7-11], the results 

obtained in this paper have two advantages. On the one 

hand, the varying sampling and uncertainties are considered 

in the control scheme. On the other hand, the non-fragile 

sampled-data control designed here is robust than the one 

only used the sampled-data control scheme, which will be 

demonstrate in the following example.

4. Numerical Examples

In this section, a numerical example is given to illustrate 

the validity and superiority of the proposed state estimator 

design method.

Consider the system with the following matrix parameters:

 








  

  
  

  










  
  
  



 








  

  
  

  











  












             








  

  
  

  













 The sector-bounded nonlinear functions are assumed to 

be   tanh , and the time varying delay is given as 

    sin  . The initial value is taken as 

      . 

Letting          and   sin   , we will 

considering the following two cases:

Case I: For parameter uncertainties ∆   sin , by 

solving the LMIs (10) and (11) in Theorem 1, the non 

-fragile sampled-data controller gain can be obtained as  

    .

Under the aforementioned gain matrix, the response curves 

of the error systems (8) are given in Fig. 1, which shows 

the states tend to zero. Fig. 2 shows the response curve of 

the control input  .

Case II: For the case of ∆   , by solving the LMIs 

(29) and (30) in Corollary 1, the sampled- data controller 

gain can be obtained as follow:

          .

Fig. 1 State trajectory of error system with non-fragile 

sampled-data control

그림 1 비결함 샘플데이타 제어를 가지는 에러시스템의 상태궤적

Fig. 2 Non-fragile sampled-data control input

그림 2 비결함 샘플데이타 제어입력

Fig. 3 State trajectories of error system under sampled-data 

control

그림 3 샘플데이타 제어를 가지는 에러시스템의 상태궤적
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Fig. 4 Sampled-data control input

그림 4 샘플데이타 제어입력

Fig. 5 The error state trajectory of  

그림 5  의 상태궤적

5. Conclusions

In this paper, we have studied a ∞  state estimation of 

static neural networks with time-varying delay. Based on 

Lyapunov functional method and LMI framework, Some 

sufficient conditions of ∞  state estimation have been 

established. The estimator matrix gain has been obtained by 

solving a set of LMIs. A simulation example has been used 

to illustrate th effectiveness of this approach.
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