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H_ State Estimation of Static Delayed Neural Networks with Non-fragile

Sampled-data Control

R o ¢*. 0] A B
(Yajuan Liu - Sangmoon Lee)

Abstract - This paper studies the state estimation problem for static neural networks with time-varying delay. Unlike other
studies, the controller scheme, which involves time-varying sampling and uncertainties, is first employed to design the state
estimator for delayed static neural networks. Based on Lyapunov functional approach and linear matrix inequality technique,
the non-fragile sampled-data estimator is designed such that the resulting estimation error system is globally asymptotically
stable with H_ performance. Finally, the effectiveness of the developed results is demonstrated by a numerical example.
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1. Introduction

In the past decades, static neural networks, where the
neuron states are utilized as basic variables to depict the
dynamical evolution rule, have been received much attention
due to their successful applications in a variety of areas
such as associative memory and combinatorial optimization.
Some typical examples of the static neural networks are the
brain-state-in-a box neural networks and the projection
neural networks, etc [1], [2]. It should be pointed out that
static neural networks are different from the local field
neural networks where the local field states of neurons are
taken as basic variables. On the other hand, time delay is
often encountered in neural networks.

The existence of time delay may result in poor
performance such as instability and oscillation of the
underlying neural networks. Up to now, stability of static
neural networks has been widely discussed and various
stability conditions have been obtained in the literatures
[3-6].

In practice, it is impossible or very expensive to
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completely acquire the state information of all neurons in
neural networks due to their complicated structure.
However, in some engineering applications, it is needed to
know these information in advance to achieve specific
objectives. Recently, some results on state estimation of
static neural networks have been derived [7-11].

A lot of control methods have recently been applied to the
design of a state estimator for neural networks. Nowadays, it
is important to consider that the control input signals are
discontinuous due to the development of high-performance
computing technology and modern digital communication
technique. As a result, the controller design problem using
sampled-data has received much attention and many
important results have been presented in recent years.

For example, the state estimation problem for neural
networks with a time-varying delay via stochastic sampled-
data control was studied in [12]. It is worth mentioning that,
in the above mentioned papers, the communication between
the neural networks and the estimator is assumed to be
perfect. However, inaccuracies or uncertainties do occur in
sampled-data controller implementation, and thus the ideal
assumption may not be satisfied.

The controllers are very sensitive to their own
uncertainties (implementation errors) and this is called
fragility problem of controllers. In this regard, the non-
fragile controllers have been employed for dynamical
networks to tolerate some uncertainties [13-15]. H_ state
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estimation of static neural networks with time varying delay
via non-fragile sampled-data controller has not been
investigated by any researchers.

Motivated the above discussion and facts, the design
problem of the state estimator for delayed static neural
networks is investigated in this paper. Unlike previous
studies, the states of the proposed static neural networks
are estimated wusing the time-varying sampling with
uncertainties. By constructing the augmented Lyapunov
function, with the help of employing integral inequalities
and convex combination method to deal with some cross
terms, some sufficient conditions are derived such that the
estimating error system is globally asymptotically stable with
a guaranteed A, performance, and the gain matrix of the
state estimator can be easily obtained by solving a convex
optimization problem under the constraint of LMIs. A
numerical example is given to demonstrate the effectiveness
of the proposed method.

Notations: Throughout this paper, I denotes the identity
matrix with appropriate dimensions, R" denotes the n
dimensional Euclidean space, and R™*" is the set of all m
n real matrices, For symmetric matrices A and B, the
notation A > B(respectively, 4> B) means that the matrix
A— B is positive definite (respectively, non-negative).
diag{..} denotes the block diagonal matrix.

2. Problem Statement

Consider the following static neural network with time delay
and noise disturbance.

z(t) = —Az(t)+ f(We(t—h(t)) +J) + Bw(t), @
y(t) = Cx(t),
2(t) = Hz(t),

where x(t) = [z, (t),2,(t),...,z, )] € R is the state vector
of the model, n corresponds to the number of neurons,
w(t)ERY denotes a noise disturbance belonging to
£,00,0), y(t)ER™ is the network output measurement
A = diag{ay, a, ...,a,} >0 is a diagonal matrix, W=[W,] is
the delayed connection weight

Fa@)=1f, @, (t). fo 2y (), oo, £, (@, @NTE R is the

T

matrix,

neuron activation function , J=[J,J,,...,J,]" is a constant

external input vector, B,C  and H are known real
constant matrices with compatible dimensions, and h(t) is a

the time-varying delay satisfying
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0<h(t)<h,h(t) <p 2
where h and p are known constants.

Assumption 1 Each neuron activation function f;(«) is

continuous and bounded, and satisfy the following
condition:
' 51 - 52

where k; and & are known real scalar.

The following full-order observer for the neural network is

proposed:
2(t) = —AZ() + FOWEGE—h(t) + ) +ult), @)
y(t) = Cx(t)

where z(t) ER" is the estimation of the neuron state
z(t), y(t) ER™ is the estimated output vector, and u(t) € R"
is the control input.

Define the error signal as e(t) =x(t)—xz(t), and the
output signal as z(t) = z(t) — z(t). Then, the error system
can be represented as

e(t) = —Ae(t) + g(We(t—h(t))) + Bw(t) — u(t), (5)
2(t) = He(t)

where g(We(t)) = f(Wz(t) + J) — fF(Wz@t) + J).
In this paper, the non-fragile sampled-data control law is
expressed as

u(t) = (K+ AK(#)) ) —y(t,) ®)
= (K+AK(t,))Celt,),
ty <t <t,, ., k=0,1,2,..

where K is the gain matrix of the feedback controller to be
determined later, tk is the updating instant time of the
Zero-Order-Hold (ZOH) and the sampling interval satisfies
oy, =t =T

Remark 1 For actual systems, parameter perturbation is
unavoidable. This phenomenon may affect the stability and
if they do not be dealt
with appropriately. Therefore, the A

the performance of the systems
no non-fragile
sampled-data state estimation for static neural networks
is consider in this paper, which has never been considered



of static neural networks.

Assumption 2 The uncertainties AK(t,)
possible controller gain fluctuations. It is assumed that
AK(t,) has the following form:

represents the

AK(t,) = DA(t,)F )

where D and F are known constant matrices with

appropriate dimensions, and A(t,) is unknown matrix
function satisfying A 7(t,)A(t,) < I

Using input delay method [12], error system (5) can be
represented as:

e(t) = —Ae(t) +g(We(t—h(t))) + Bw(t) ®)

—KCe(t—7(t)) — D, (t—7(t)),
plt—7(t)) = A(t—7(t)q(t—7(t))
q(t—7(t)) = ECe(t— (1)),

z(t) = He(t)

€[0,7] and (t) = 1.
The H,, performance state estimation problem is stated

where 7(t) =t —t,

as follows. For a prescribed level > 0 of noise attenuation,
it is to find a suitable estimator (4) such that:

1) the estimation error system (5) with w(t)=0 is globally
asymptotically stable;
2) under the zero-initial condition

Iz, < lw)l, )

holds for all non-zero

161, = [ “vT@utear.

w(t) < £,[0,00) , where

3. Main Results

In this section, a design problem of state estimation for

delayed  static neural networks using non-fragile
sampled-data controller will be investigated. The following

lemmas are essential to derive the main results.

Lemma 1 [16] For any constant positive definite matrix
]L/IE R'Hl xXn and
hold

B3 <s <a, the following inequalities

*(a*ﬂ)/x'(s)ﬂ[x(s)ds = —Jala)—2(8)| "Mz (a) - 2 (5)]

a

Lemma 2  (Lower bounds lemma [17]) Let £, f,, -

fis for s fy it R™ — R have positive values in an open
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subset D of R,. Then, the reciprocally convex combination

of f, over D satisfies

+ max, E g”

7#]

ming, . >0£,071}E f Ef

subject to

i(t) gw(t)‘> 0}.

{gﬁ R g0 = 9050 g ) 10

Lemma 3 [18] For given matrix R >0, the following
inequality holds for all continuously differentiable function
z(t) in [a,b] ER" :

—(b—a) bx.T(s)Ri(s)ds
)

—[z(b) —2(a)] " Rlz(b) —z(a)] — 3Q7RQ,
b
where Q =z() +z(a) — bfa/al‘(s)ds.
Theorem 1 For given scalars and ) 0, error system (8) is

asymptotically  stable, if there exist 3n xX3n  matrices
P >0, @>0, nxXn matrices R >0,R>0 5 >0, >0,
e} >0 A ={A A A >0,

any n X n matrices 7}, 2n X2n matrix 7,, n <1 matrixG

diagonal matrices I' = {y;, 7%, --

and a scalar e >0 such that the following LMIs are satisfied
for #(t) ={0, 7}

Q(n(t) =le; m(t)eg + (r—7(t))e, ] Pley, e1_‘35]T
+[em 61—65]P[€1 T(t)€6+(T—T(t))67]T
+[61 eg]Q[el eg]T_ (1_,“)[62 eg]Q[eg eg]T

+e,Sief — eySied + e, Spel —esSped
9 . R, T

+hie ey — Hl[ * R }Hl

+ e Roety — 11, [1: g ol

+e, WHK +K")Ted

e (K + K We

—2e, WK TK*"We — 2e4le]

+e2WT(K—+K+)AegT

+e AT (K + K Wey

—2e, WK AK " We, —2ey/e]

Jr(e1 +ae]o)u7+ WT(C] +aelU)T
+ele,C"TETEC] — ¢, )

e, H Hel — e el <0 (10)
S w
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where
I = [61762 62763]
I, = [61—64 e, te, —2, e, —e; 64+65—2€7]
v = [-MAOO0O-GCO000

0 M —M —MD MB

and e, € RUITOX (;=1,2..,12) means the block entry

matrices, e.ge;&(t) = e(t—h(t)) where

@) = [e7t) eTt—n()) el(t—n)

eT(t—1(t) e(t—1)
1 t 1 t—1(t)
ﬁ/tim)e(s)ds (t)/ e(s)ds
g"(We(t)) " (W (t— h( )
)

eT(t) plt—r(t) w’(t)].

Moreover, the non- fragile sampled- data controller gain is
given by K = M 'G

Proof Choose a Lyapunov functional candidate as

t) = E v, (12)
i=1
where
Vi (t) Pl elt)

/t ) Lg( Wegs Q[g(ﬂﬁesg ))]ds
V},(t) = \/‘f' . 16 ds+f
= h/ f s)dsda
= / / s)dsdo

Taking the time-derivative of V;(t)(i=1,2,...,5) along the
trajectory of system (8) yields

e(t) r
ho = [/‘: Te(s)ds P[e(t)f(et()t_ﬂ]’ 1
O = |G 0R) "
_ e(t) TQ
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I/})(t) = eT(t)Sle(t) - eT(t*h)Sle(t*h) 15)
+eT(t)Se(t) —eT(t—7)Se(t—T)

V(1) = % T(t) Rie(t) — h f s)Rel(s (16)
t— h

(1) = 2e () Ryelt) — r/

t—7

T(s) Ry (s)ds 17

Based on Lemmas 1, 2 and 3, one can obtain

—h/: he'T(s)Rlé(s)ds

)
t)fe)(tfhgt) ] (18)

= ‘/FT(”e.T(s)RQé(s)ds — T/t

t—7 t—r(t)

< T(t) (a{(t)RQCvl (t) + 3a2T(t)32a2 (1))

e.T(s)R2é(s)ds

—(O¢3T(t)32053(t) + 3a4T(t)R2oa4(t))

=l | 7l |

ale VAl

T(t) 04(t) 2 a4(t)
< —a"() [}f’f %j o) 19
where

a(t) = lof(t).a) (t),aq (t),af ()],

o (t) = e(t—7(t) —e(t—r),

) t—r(t)
0y(t) = elt—r(t) welt=r) s [ elo)is
as(t) =elt) —e(t—7(t)),

— _2 [
0 (t) = e(0) +e(t=7(1) == fwme(s)ds,
7|V,
27 | % 3R,



On the other hand, according to (8), for any appropriately
dimensioned matrix M, the following equation holds

20e” ()M + eT(t) Mi[— et) — Ae(t) + g(We (t — h(t)) (20)
+ Buw(t) — KCe(t—1(t)) — Dp(t—(t))] = 0.

Furthermore, the diagonal
A={A,N,5A0,} >0, we can

inequalities,

matriX, I'= {377} >0,

achieve the following

—29" (We (t)) Ig(We(t))
+2eT(t) WHK +K)Iy(Wel(t))

—2T() WIK TK " We(t) = 0, 1)
—2g" (We(t—n(t))) Ag( We(t—h(t)))
+2eT(t—h (@) WHE + K Ag( We(t—h(¢)))

—2eT(t—h () WK AK We(t—h(t)) =0 (22)
From (7), the following inequality holds
p (t=r(t)p(t—7(t) < ¢"(t—7(t))q(t—7(t)) 23)

and so there exists a positive scalar ¢, satisfying

elg” (t—7(8))glt —7(t)) — p" (¢t —7(t))p(t—7(¢))] = 0 (24)

To establish the A, performance for the system, we define

J:‘/m[z — Pl (t)w(t)]dt 25)
0

Under the zero-initial condition, it is obvious that
Vir(¢)l,—, = 0, for any non-zero w(t) € £,[0,), we can
get

J, < f OO[_ — ~Pw? (t)w(t))dt (26)

+”V<e<t>>|,w - V<e<t>>|f ,
/ U 2 (6)2(t) — u” (¢

Then, combined with (13)-(26) and define MK = G, we
have

IN

) + Vr(t))]dt

(1)2(t) = Ful (w(t) + V(1))
<&M (0)0m))e )<0 @1

which completes the proof.
Consider the particular case of the controller scheme (6)
where there is in input uncertainty, estimating error

system (8) reduces to

e(t) = —de(t) + g(We(t—
— KCe(t—1(t)),

h(t))) + Bu(t)
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2(t) = Hel(t), (28)

Based on Theorem 1, the following corollary follows
immediately.

Corollary 1 For given scalars p and 7> 0, error system (28)
is asymptotically stable, if there exist 3nx3n matrices
P>0, >0, nXn, matrices R >0 R, >0, >0, 5 >0
diagonal matrices, I'={y, 7,-+7%,}> 0, A= {A, A A} >0,
any nxn matrices 7, 2nx2n matrix 7, and nx1 matrix

G such that the following LMIs are satisfied for 7(t) = {0,7}

Q1) = le, m(t)eg + (r—7(t))e, ] Pleyy e, —e5)”
tlew er—egPley r(t)eg +(r—r(t))e.)”
+[61 eS]Q[el es]T (1- M)[e_g 6_9}@[6_2 6_9}T
+eSel —e Sel + e Sel—e.S,
+hZe Riel —1I, [Rl !
10411€10 1| % R,
R, T)|—
|y

HT

+72610122€10 H

e, WK +K" el
e (K +K) Wel
—2e, WK TK We! -
e, WK + K Ael

eTel
2egleg

— e, WK™ AK" Wel — 2egAel
+ (ej+ oceTO)J/Jr 28 (eTJr aeTn) r

te H He — e, el <0 29)
BT Ry T,
>
[* RJ > 07[* R, 0 (30)
where
s B
II,=le,—e, e +e4 266 e,— €5 €4+85*267]
V=[-MAO00 -GCO0O0O

0 M —M MB]

and ee, ER1O" 1> (j=1,2..,11) means the block entry

matrices, e.g., E £(t) = e(t—h(t)) where

Moreover, the sampled-data controller gain is given by
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K =M"'G.

Remark 2 Comparing with the existing works for the state
estimation of static neural networks [7-11], the results
obtained in this paper have two advantages. On the one
hand, the varying sampling and uncertainties are considered
in the control scheme. On the other hand, the non-fragile
sampled-data control designed here is robust than the one
only used the sampled-data control scheme, which will be
demonstrate in the following example.

4. Numerical Examples

In this section, a numerical example is given to illustrate
the validity and superiority of the proposed state estimator
design method.

Consider the system with the following matrix parameters:

1.06 0 0 —0.32 0.85—1.36
A=| 0 142 0 J,W— 1.1 0.410.5],
0 0 088 0.42 0.82—0.95
1005 0.2 0
H—[l 0 1|,B=102|,J=10|,
0—-11 0.2 0
100 0.2
C=1[105 0],D= [010 ,E=10.1].
001 0.2

The sector-bounded nonlinear functions are assumed to
be f(z)=tanh(z), and the time varying delay is given as
h(t) = 0.5 + 0.5sin(t). The initial value is taken as
e(0) = [1 0.5 —2]7.

Letting v =3,a=1,7=0.24 and w(t) = sin(t)e ', we will
considering the following two cases:

Case [: For parameter uncertainties A(t,) =sin(t,), by

solving the LMIs (10) and (11) in Theorem 1, the non
-fragile sampled-data controller gain can be obtained as

K=1[2.8383 1.6839 0.7731]7.

Under the aforementioned gain matrix, the response curves
of the error systems (8) are given in Fig. 1, which shows
the states tend to zero. Fig. 2 shows the response curve of
the control input wu(t).

Case II: For the case of A(t,) =0, by solving the LMIs
(29) and (30) in Corollary 1, the sampled- data controller
gain can be obtained as follow:

K= [1.3229 1.0720 0.6007]7.
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Fig. 1 State trajectory of error system with non-fragile
sampled-data control
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Fig. 2 Non-fragile sampled-data control input
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Fig. 3 State trajectories of error system under sampled-data
control
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Fig. 4 sampled-data control input
J8 4 METoler AMojgjE]

T T T T 1
Non-fragile sampled-data control
Sampled-data control
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Fig. 5 The error state trajectory of e, (t)
J%8 5 ¢, (t)2] HEiHA

5. Conclusions

In this paper, we have studied a H,_ state estimation of
static neural networks with time-varying delay. Based on
Lyapunov functional method and LMI framework, Some
sufficient conditions of H,, state estimation have been
established. The estimator matrix gain has been obtained by
solving a set of LMIs. A simulation example has been used
to illustrate th effectiveness of this approach.
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