• 제목/요약/키워드: Noetherian rings

검색결과 89건 처리시간 0.024초

S-NOETHERIAN IN BI-AMALGAMATIONS

  • Kim, Hwankoo;Mahdou, Najib;Zahir, Youssef
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.1021-1029
    • /
    • 2021
  • This paper establishes necessary and sufficient conditions for a bi-amalgamation to inherit the S-Noetherian property. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations. Our results allow us to construct new and original examples of rings satisfying the S-Noetherian property.

FINITELY GENERATED PROJECTIVE MODULES OVER NOETHERIAN RINGS

  • LEE, SANG CHEOL;KIM, SUNAH
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.499-511
    • /
    • 2006
  • It is well-known that every finitely generated torsion-free module over a principal ideal domain is free. This will be generalized. We deal with ideals of the finite, external direct product of certain rings. Finally, if M is a torsion-free, finitely generated module over a reduced, Noetherian ring A, then we prove that Ms is a projective module over As, where $S=A{\setminus}(A)$.

  • PDF

A Characterization of Dedekind Domains and ZPI-rings

  • Rostami, Esmaeil
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.433-439
    • /
    • 2017
  • It is well known that an integral domain D is a Dedekind domain if and only if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the Zariski topology. We also give a new characterization of ZPI-rings.

A Note on Gaussian Series Rings

  • Kim, Eun Sup;Lee, Seung Min;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.419-431
    • /
    • 2017
  • In this paper, we define a new kind of formal power series rings by using Gaussian binomial coefficients and investigate some properties. More precisely, we call such a ring a Gaussian series ring and study McCoy's theorem, Hermite properties and Noetherian properties.

ON UNIFORMLY S-ABSOLUTELY PURE MODULES

  • Xiaolei Zhang
    • 대한수학회지
    • /
    • 제60권3호
    • /
    • pp.521-536
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. In this paper, we introduce and study the notions of u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize uniformly S-von Neumann regular rings and uniformly S-Noetherian rings using uniformly S-absolutely pure modules.

AN ASSOCIATED SEQUENCE OF IDEALS OF AN INCREASING SEQUENCE OF RINGS

  • Ali, Benhissi;Abdelamir, Dabbabi
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1349-1357
    • /
    • 2022
  • Let 𝒜 = (An)n≥0 be an increasing sequence of rings. We say that 𝓘 = (In)n≥0 is an associated sequence of ideals of 𝒜 if I0 = A0 and for each n ≥ 1, In is an ideal of An contained in In+1. We define the polynomial ring and the power series ring as follows: $I[X]\, = \,\{\, f \,=\, {\sum}_{i=0}^{n}a_iX^i\,{\in}\,A[X]\,:\,n\,{\in}\,\mathbb{N},\,a_i\,{\in}\,I_i \,\}$ and $I[[X]]\, = \,\{\, f \,=\, {\sum}_{i=0}^{+{\infty}}a_iX^i\,{\in}\,A[[X]]\,:\,a_i\,{\in}\,I_i \,\}$. In this paper we study the Noetherian and the SFT properties of these rings and their consequences.

Injective cover over hereditary and noetherian rings

  • Park, Sang-Won
    • 대한수학회논문집
    • /
    • 제10권2호
    • /
    • pp.261-267
    • /
    • 1995
  • Using the dual of a categorical definition of an injective envelope, Enochs defined an injective cover. In this paper we will show how injective covers can be used to characterize several well known classes of rings.

  • PDF