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ON UNIFORMLY S-ABSOLUTELY PURE MODULES

Xiaolei Zhang

Abstract. Let R be a commutative ring with identity and S a multi-

plicative subset of R. In this paper, we introduce and study the notions of

u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules
which extend the classical notions of pure exact sequences and absolutely

pure modules. And then we characterize uniformly S-von Neumann reg-
ular rings and uniformly S-Noetherian rings using uniformly S-absolutely

pure modules.

1. Introduction and preliminary

Throughout this paper, R is always a commutative ring with identity, all
modules are unitary and S is always a multiplicative subset of R, that is, 1 ∈ S
and s1s2 ∈ S for any s1 ∈ S, s2 ∈ S.

The notion of absolutely pure modules was first introduced by Maddox [10]
in 1967. An R-module E is said to be absolutely pure provided that E is a
pure submodule of every module which contains E as a submodule. It is well-
known that an R-module E is absolutely pure if and only if Ext1R(N,E) = 0
for any finitely presented module N ([14, Proposition 2.6]). So absolutely pure
modules are also studied with the terminology FP-injective modules (FP for
finitely presented), see Stenström [14] and Jain [7] for example. The notion of
absolutely pure modules is very attractive in that it is not only a generalization
of that of injective modules but also an important tool to characterize some
classical rings. For example, a ring R is semihereditary if and only if any
homomorphic image of an absolutely pure R-module is absolutely pure ([11,
Theorem 2]); a ring R is Noetherian if and only if any absolutely pure R-module
is injective ([11, Theorem 3]); a ring R is von-Neumann regular if and only if
any R-module is absolutely pure ([11, Theorem 5]); a ring R is coherent if and
only if the class of absolutely pure R-modules is closed under direct limits if
and only if the class of absolutely pure R-modules is a (pre)cover ([14, Theorem
3.2], [4, Corollary 3.5]).
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One of the most important methods to generalize the classical rings and
modules is in terms of multiplicative subsets S of R (see [1–3,8,9] for example).
In 2002, Anderson and Dumitrescu [1] introduced S-Noetherian rings R, that is,
for any ideal I of R, there exists a finitely generated sub-ideal K of I such that
sI ⊆ K. Cohen’s Theorem, Eakin-Nagata Theorem and Hilbert Basis Theorem
for S-Noetherian rings are given in [1]. However, the choice of s ∈ S such
that sI ⊆ K in the definition of S-Noetherian rings as above is not uniform.
Hence, Qi et al. [12] introduced the notion of uniformly S-Noetherian rings
and obtained the Eakin-Nagata-Formanek Theorem and Cartan-Eilenberg-Bass
Theorem for uniformly S-Noetherian rings. Recently, the author of the paper
[17] introduced the notions of u-S-flat modules and uniformly S-von Neumann
regular rings which can be seen as uniformly S-versions of flat modules and
von Neumann regular rings. In this paper, we generalized the classical pure
exact sequences and absolutely pure modules to u-S-pure u-S-exact sequences
and u-S-absolutely pure modules, and then obtain uniformly S-versions of some
classical characterizations of pure exact sequences and absolutely pure modules
(see Theorem 2.2 and Theorem 3.2). Finally, we characterize uniformly S-von
Neumann regular rings and uniformly S-Noetherian rings using u-S-absolutely
pure modules (see Theorem 3.5 and Theorem 3.7). As our work involves the
uniformly S-torsion theory, we provide a quick review as below.

Recall from [17], an R-module T is said to be u-S-torsion (with respect to s)
provided that there exists an element s ∈ S such that sT = 0. An R-sequence

· · · → An−1
fn−→ An

fn+1−−−→ An+1 → · · ·

is u-S-exact if for any n there is an element s ∈ S such that

sKer(fn+1) ⊆ Im(fn) and sIm(fn) ⊆ Ker(fn+1).

An R-sequence 0 → A
f−→ B

g−→ C → 0 is called a short u-S-exact sequence
(with respect to s) if sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g) for some s ∈
S. An R-homomorphism f : M → N is a u-S-monomorphism (resp. u-S-

epimorphism, u-S-isomorphism) (with respect to s) provided 0 → M
f−→ N

(resp. M
f−→ N → 0, 0 → M

f−→ N → 0) is u-S-exact (with respect to s). Let
M and N be R-modules. We say M is u-S-isomorphic to N if there exists a
u-S-isomorphism f : M → N . A family C of R-modules is said to be closed
under u-S-isomorphisms if whenever M is u-S-isomorphic to N and M is in C,
we have N is also in C. One can deduce from the following Proposition 1.1 that
the existence of u-S-isomorphisms of two R-modules is actually an equivalence
relation.

Proposition 1.1. Let R be a ring and S a multiplicative subset of R. Suppose
there is a u-S-isomorphism f : M → N for R-modules M and N . Then there
is a u-S-isomorphism g : N → M and t ∈ S such that f ◦ g = tIdN and
g ◦ f = tIdM .
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Proof. Consider the following commutative diagram:

0 // Ker(f) // M
f //

"" ""

N // Coker(f) // 0

Im(f)
. �

==

with sKer(f) = 0 and sN ⊆ Im(f) for some s ∈ S. Define g1 : N → Im(f)
by g1(n) = sn for any n ∈ N . Then g1 is a well-defined R-homomorphism
since sn ∈ Im(f). Define g2 : Im(f) → M by g2(f(m)) = sm. Then g2 is a
well-defined R-homomorphism. Indeed, if f(m) = 0, then m ∈ Ker(f) and so
sm = 0. Set g = g2 ◦ g1 : N → M . We claim that g is a u-S-isomorphism.
Indeed, let n be an element in Ker(g). Then sn = g1(n) ∈ Ker(g2). Note
that sKer(g2) = 0. Thus s2n = 0. So s2Ker(g) = 0. On the other hand, let
m ∈ M . Then g(f(m)) = g2 ◦ g1(f(m)) = g2(f(sm)) = s2m. Set t = s2 ∈ S.
Then g ◦ f = tIdM and tm ∈ Im(g). So tM ⊆ Im(g). It follows that g is a
u-S-isomorphism. It is also easy to verify that f ◦ g = tIdN . □

Remark 1.2. Let R be a ring, S be a multiplicative subset of R, and M and N
be R-modules. Then the condition “there is an R-homomorphism f : M → N
such that fS : MS → NS is an isomorphism” does not mean “there is an
R-homomorphism g : N → M such that gS : NS → MS is an isomorphism”.

Indeed, let R = Z be the ring of integers, S = R − {0} and Q the quotient
field of integers. Then the embedding map f : Z ↪→ Q satisfies fS : Q → Q
is an isomorphism. However, since HomZ(Q,Z) = 0, there does not exist any
R-homomorphism g : Q → Z such that gS : Q → Q is an isomorphism.

The following two results state that a short u-S-exact sequence induces long
u-S-exact sequences by the functors “Tor” and “Ext” as the classical cases.

Theorem 1.3. Let R be a ring, S a multiplicative subset of R and N an

R-module. Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence of R-
modules. Then for any n ≥ 1 there is an R-homomorphism δn : TorRn (C,N) →
TorRn−1(A,N) such that the induced sequence

· · · → TorRn (A,N) → TorRn (B,N) → TorRn (C,N)
δn−→ TorRn−1(A,N) →

TorRn−1(B,N) → · · · → TorR1 (C,N)
δ1−→ A⊗R N → B ⊗R N → C ⊗R N → 0

is u-S-exact.

Proof. Since the sequence 0 → A
f−→ B

g−→ C → 0 is u-S-exact at B. There

are three exact sequences 0 → Ker(f)
iKer(f)−−−−→ A

πIm(f)−−−−→ Im(f) → 0, 0 →
Ker(g)

iKer(g)−−−−→ B
πIm(g)−−−−→ Im(g) → 0 and 0 → Im(g)

iIm(g)−−−−→ C
πCoker(g)−−−−−−→

Coker(g) → 0 with Ker(f) and Coker(g) u-S-torsion. There also exists s ∈ S
such that sKer(g) ⊆ Im(f) and sIm(f) ⊆ Ker(g). Denote T = Ker(f) and
T ′ = Coker(g).
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Firstly, consider the exact sequence

TorRn+1(T
′, N) → TorRn (Im(g), N)

TorRn (iIm(g),N)
−−−−−−−−−−→ TorRn (C,N) → TorRn (T

′, N).

Since T ′ is u-S-torsion, TorRn+1(T
′, N) and TorRn (T

′, N) is u-S-torsion. Thus

TorRn (iIm(g), N) is a u-S-isomorphism. So there is also a u-S-isomorphism

hn
Im(g) : Tor

R
n (C,N) → TorRn (Im(g), N) by Proposition 1.1. Consider the exact

sequence:

TorRn−1(T,N) → TorRn−1(A,N)
TorRn−1(πIm(f),N)
−−−−−−−−−−−→ TorRn−1(Im(f), N) → TorRn−2(T,N).

Since T is u-S-torsion, we have TorRn−1(πIm(f), N) is a u-S-isomorphism. So

there is also a u-S-isomorphism hn−1
Im(f) : Tor

R
n−1(Im(f), N) → TorRn−1(A,N) by

Proposition 1.1. We have two exact sequences

TorRn+1(T1, N) → TorRn (sKer(g), N)
TorRn (i1sKer(g),N)
−−−−−−−−−−−→ TorRn (Im(f), N) → TorRn+1(T1, N)

and

TorRn+1(T2, N) → TorRn (sKer(g), N)
TorRn (i2sKer(g),N)
−−−−−−−−−−−→ TorRn (Ker(g), N) → TorRn+1(T2, N),

where T1 = Im(f)/sKer(g) and T2 = Im(f)/sIm(f) is u-S-torsion. So

TorRn (i
1
sKer(g), N) and TorRn (i

2
sKer(g), N) are u-S-isomorphisms. Thus there is a

u-S-isomorphism hn
sKer(g) : TorRn (Ker(g), N) → TorRn (sKer(g), N). Note that

there is an exact sequence

TorRn (B,N)
TorRn (πIm(g),N)
−−−−−−−−−−→ TorRn (Im(g), N)

δnIm(g)−−−−→ TorRn−1(Ker(g), N)

TorRn−1(iKer(g),N)
−−−−−−−−−−−−→ TorRn−1(B,N).

Set δn = hn
Im(g) ◦ δnIm(g) ◦ hn

sKer(g) ◦ TorRn (i
1
sKer(g), N) ◦ hn−1

Im(f) : TorRn (C,N) →
TorRn−1(A,N). Since hn

Im(g), δ
n
Im(g), h

n
sKer(g) and hn−1

Im(f) are u-S-isomorphisms,

we have the sequence

TorRn (B,N) → TorRn (C,N)
δn−→ TorRn−1(A,N) → TorRn−1(B,N)

is u-S-exact.
Secondly, consider the exact sequence:

TorRn+1(T,N) → TorRn (A,N)
TorRn (iIm(f),N)
−−−−−−−−−−→ TorRn (Im(f), N) → TorRn (T,N).

Since T is u-S-torsion, TorRn (iIm(f), N) is a u-S-isomorphism. Consider the
exact sequences:

TorRn+1(Im(g), N) → TorRn (Ker(g), N)
TorRn (iKer(g),N)
−−−−−−−−−−→ TorRn (B,N) → TorRn (Im(g), N)

and

TorRn+1(T
′, N) → TorRn (Im(g), N)

TorRn (iIm(g),N)
−−−−−−−−−−→ TorRn (C,N) → TorRn (T

′, N).
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Since T ′ is u-S-torsion, we have TorRn (iIm(g), N) is a u-S-isomorphism. Since

TorRn (i
1
sKer(g), N) and TorRn (i

2
sKer(g), N) are u-S-isomorphisms as above,

TorRn (A,N) → TorRn (B,N) → TorRn (C,N) is u-S-exact at TorRn (B,N).
Iterating the above steps, we have the following u-S-exact sequence:

· · · → TorRn (A,N) → TorRn (B,N) → TorRn (C,N)
δn−→ TorRn−1(A,N) →

TorRn−1(B,N) → · · · → TorR1 (C,N)
δ1−→ A⊗R N → B ⊗R N → C ⊗R N → 0.

□

Similarly to the proof of Theorem 1.3, we can deduce the following result.

Theorem 1.4. Let R be a ring, S be a multiplicative subset of R, and M

and N be R-modules. Suppose 0 → A
f−→ B

g−→ C → 0 is a u-S-exact
sequence of R-modules. Then for any n ≥ 1 there are R-homomorphisms
δn : Extn−1

R (M,C) → ExtnR(M,A) and δn : Extn−1
R (A,N) → ExtnR(C,N)

such that the induced sequences

0 → HomR(M,A) → HomR(M,B) → HomR(M,C)
δ0−→ Ext1R(M,A) → · · · →

Extn−1
R (M,B) → Extn−1

R (M,C)
δn−→ ExtnR(M,A) → ExtnR(M,B) → · · ·

and

0 → HomR(C,N) → HomR(B,N) → HomR(A,N)
δ0−→ Ext1R(C,N) → · · · →

Extn−1
R (B,N) → Extn−1

R (A,N)
δn−→ ExtnR(C,N) → ExtnR(B,N) → · · ·

are u-S-exact.

2. u-S-pure u-S-exact sequences

Recall from [13] that an exact sequence 0 → A → B → C → 0 is said
to be pure provided that for any R-module M , the induced sequence 0 →
M ⊗R A → M ⊗R B → M ⊗R C → 0 is also exact. Now we introduce the
uniformly S-version of pure exact sequences.

Definition 2.1. Let R be a ring and S a multiplicative subset of R. A short
u-S-exact sequence 0 → A → B → C → 0 is said to be u-S-pure provided
that for any R-module M , the induced sequence 0 → M ⊗R A → M ⊗R B →
M ⊗R C → 0 is also u-S-exact.

Obviously, any pure exact sequence is u-S-pure. In [16, 34.5], there are many
characterizations of pure exact sequences. The next result generalizes some of
these characterizations to u-S-pure u-S-exact sequences.

Theorem 2.2. Let 0 → A
f−→ B

f ′

−→ C → 0 be a short u-S-exact sequence of
R-modules. Then the following statements are equivalent:

(1) 0 → A
f−→ B

f ′

−→ C → 0 is a u-S-pure u-S-exact sequence;
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(2) there exists an element s ∈ S satisfying that if a system of equa-
tions f(ai) =

∑m
j=1 rijxj (i = 1, . . . , n) with rij ∈ R and unknowns

x1, . . . , xm has a solution in B, then the system of equations sai =∑m
j=1 rijxj (i = 1, . . . , n) is solvable in A;

(3) there exists an element s ∈ S satisfying that for any given commuta-
tive diagram with F finitely generated free and K a finitely generated
submodule of F , there exists a homomorphism η : F → A such that
sα = ηi;

0 // K

α
��

i // F

η||
β
��

A
f
// B

(4) there exists an element s ∈ S satisfying that for any finitely presented
R-module N , the induced sequence 0 → HomR(N,A) → HomR(N,B)
→ HomR(N,C) → 0 is u-S-exact with respect to s.

Proof. (1) ⇒ (2) Set Γ = {(K,Rn) |K is a finitely generated submodule of

Rn and n < ∞}. Define M =
⊕

(K,Rn)∈Γ R
n/K. Then 0 → M ⊗R A

1⊗f−−−→
M ⊗R B → M ⊗R C → 0 is u-S-exact by (1). So there is an element s ∈ S
such that sKer(1M ⊗ f) = 0. Hence sKer(1Rn/K ⊗ f) = 0 for any (K,Rn) ∈ Γ.

Now assume that there exists bj ∈ B such that f(ai) =
∑m

j=1 rijbj for any

j = 1, . . . ,m. Let F be a free R-module with a basis {e1, . . . , en}, and let
K ⊆ F be the submodule generated by m elements {

∑n
i=1 rijei | j = 1, . . . ,m}.

Then, F/K is generated by {e1+K, . . . , en+K}. Note that
∑n

i=1 rij(ei+K) =∑n
i=1 rijei +K = 0 +K in F/K. Hence, we have

n∑
i=1

((ei +K)⊗ f(ai)) =

n∑
i=1

((ei +K)⊗ (

m∑
j=1

rijbj))

=

m∑
j=1

((

n∑
i=1

rij(ei +K))⊗ bj) = 0

in F/K⊗B. And so
∑n

i=1((ei+K)⊗ai) ∈ Ker(1F/K⊗f). Hence, s
∑n

i=1((ei+

K) ⊗ ai) =
∑n

i=1((ei + K) ⊗ sai) = 0 in F/K ⊗R A. By [6, Chapter I,

Lemma 6.1], there exist dj ∈ A and tij ∈ R such that sai =
∑t

k=1 likdk and∑n
i=1 lik(ei +K) = 0, and so

∑n
i=1 likei ∈ K. Then there exists tjk ∈ R such

that
∑n

i=1 likei =
∑m

j=1 tjk(
∑n

i=1 rijei) =
∑n

i=1(
∑m

j=1(tjkrij)ei). Since F is

free, we have lik =
∑m

j=1 rijtjk. Hence

sai =

t∑
k=1

likdk =

t∑
k=1

(

m∑
j=1

rijtjk)dk =

m∑
j=1

rij(

t∑
k=1

tjkdk)

with
∑t

k=1 tjkdk ∈ A. That is, sai =
∑m

j=1 rijxj is solvable in A.
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(2) ⇒ (1) Let s ∈ S satisfying (2) and M be an R-module. Then we have a

u-S-exact sequence M ⊗R A
1⊗f−−−→ M ⊗R B → M ⊗R C → 0 by Theorem 1.3.

We will show that Ker(1 ⊗ f) is u-S-torsion. Let {
∑nλ

i=1 u
λ
i ⊗ aλi |λ ∈ Λ} be

the generators of Ker(1⊗ f). Then
∑nλ

i=1 u
λ
i ⊗ f(aλi ) = 0 in M ⊗R B for each

λ ∈ Λ. By [6, Chapter I, Lemma 6.1], there exist rλij ∈ R and bλj ∈ B such that

f(aλi ) =
∑mλ

j=1 r
λ
ijb

λ
j and

∑nλ

i=1 u
λ
i r

λ
ij = 0 for each λ ∈ Λ. So saλi =

∑mλ

j=1 r
λ
ijx

λ
j

have a solution, say aλj in A by (2). Then

s(

nλ∑
i=1

uλ
i ⊗ aλi ) =

nλ∑
i=1

uλ
i ⊗ saλi

=

nλ∑
i=1

uλ
i ⊗ (

mλ∑
j=1

rλija
λ
j )

=

mλ∑
j=1

((

nλ∑
i=1

rλiju
λ
i )⊗ aλj )

= 0

for each λ ∈ Λ. Hence sKer(1 ⊗ f) = 0, and 0 → M ⊗R A → M ⊗R B →
M ⊗R C → 0 is u-S-exact.

(2) ⇒ (3) Let s ∈ S satisfying (2) and {e1, . . . , en} the basis of F . SupposeK
is generated by {yi =

∑m
j=1 rijej | i = 1, . . . ,m}. Set β(ej) = bj and α(yi) = ai

for each i and j. Then f(ai) =
∑m

j=1 rijbj . By (2), we have sai =
∑m

j=1 rijdj
for some dj ∈ A. Let η : F → A be the R-homomorphism satisfying η(ej) = dj .
Then ηi(yi) = ηi(

∑m
j=1 rijej) =

∑m
j=1 rijη(ej) =

∑m
j=1 rijdj = sai = sα(yi),

and so we have sα = ηi.
(3) ⇒ (4) Let s ∈ S satisfy (3). Note that A is u-S-isomorphic to Im(f) and

C is u-S-isomorphic to Coker(f). Thus, by Proposition 1.1, we have homomor-
phisms t1 : A → Im(f) with t1(a) = f(a) for any a ∈ A and t′1 : Im(f) → A such
that t1t

′
1 = s1IdIm(f) and t′1t1 = s1IdA, and homomorphisms t2 : Coker(f) →

C and t′2 : C → Coker(f) such that f ′ = t2πCoker(f), t2t
′
2 = s2IdC and

t′2t2 = s2IdCoker(f) for some s1, s2 ∈ S, where πCoker(f) : B ↠ Coker(f)
is the natural epimorphism. Let N be a finitely presented R-module with
0 → K → F → N → 0 exact, where F is finitely generated free and K finitely
generated. Let γ be a homomorphism in HomR(N,C). Considering the exact
sequence 0 → Im(f) → B → Coker(f) → 0, we have the following commutative
diagram with rows exact:

0 // K

h
��

iK // F
πN //

g

��

N

t′2γ��

// 0

0 // Im(f)
iIm(f)

// B
πCoker(f)

// Coker(f) // 0
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By (3), there exists an homomorphism η : F → A such that st′1h = ηiK . So
ss1h = st1t

′
1h = t1ηiK . So the following diagram is also commutative:

0 // K

ss1h
��

iK // F

t1ηyy

πN //

ss1g

��

N

δxx
ss1t

′
2γ��

// 0

0 // Im(f)
iIm(f)

// B
πCoker(f)

// Coker(f) // 0

So by [15, Exercise 1.60], there is an R-homomorphism δ : N → B such that
ss1t

′
2γ = πCoker(f)δ. So ss1s2γ = ss1t2t

′
2γ = t2πCoker(f)δ = f ′δ = f ′∗(δ).

Hence f ′∗ : HomR(N,B) → HomR(N,C) is a u-S-epimorphism with respect
to ss1s2. Consequently, one can verify the R-sequence 0 → HomR(N,A) →
HomR(N,B) → HomR(N,C) → 0 is u-S-exact with respect to ss1s2 by Theo-
rem 1.4.

(4) ⇒ (2) Let s ∈ S satisfying (4) and 0 → A
f−→ B

f ′

−→ C → 0 a short
u-S-exact sequence of R-modules. Similarly to the proof of (3) ⇒ (4), we have
homomorphisms t1 : A → Im(f) with t1(a) = f(a) for any a ∈ A and t′1 :
Im(f) → A such that t1t

′
1 = s1IdIm(f) and t′1t1 = s1IdA, and homomorphisms

t2 : Coker(f) → C and t′2 : C → Coker(f) such that f ′ = t2πCoker(f), t2t
′
2 =

s2IdC and t′2t2 = s2IdCoker(f) for some s1, s2 ∈ S, where πCoker(f) : B ↠
Coker(f) is the natural epimorphism.

Suppose that f(ai) =
∑m

j=1 rijbj (i = 1, . . . , n) with ai ∈ A, bj ∈ B and

rij ∈ R. Let F0 be a free module with a basis {e1, . . . , em} and F1 a free module
with basis {e′1, . . . , e′n}. Then there are R-homomorphisms τ : F0 → B and
σ : F1 → Im(f) satisfying τ(ej) = bj and σ(e′i) = f(ai) for each i, j. Define an
R-homomorphism h : F1 → F0 by h(e′i) =

∑m
j=1 rijej for each i. Then τh(e′i) =∑m

j=1 rijτ(ej) =
∑m

j=1 rijbj = f(ai) = σ(e′i). Set N = Coker(h). Then N is

finitely presented. Thus there exists a homomorphism ϕ : N → Coker(f) such
that the following diagram commutative:

F1

σ
��

h // F0
g //

τ
��

N

ϕ
��

// 0

0 // Im(f)
iIm(f)

// B
πCoker(f)

// Coker(f) // 0

Note that the induced sequence

0 → HomR(N, Im(f)) → HomR(N,B) → HomR(N,Coker(f)) → 0

is u-S-exact with respect to s1s2s by (4). Hence there exists a homomorphism
δ : N → Coker(f) such that s1s2sϕ = πCoker(f)δ. Consider the following
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commutative diagram:

F1

s1s2sσ
��

h // F0

ηyy

g //

s1s2sτ

��

N

δ
xx

s1s2sϕ
��

// 0

0 // Im(f)
iIm(f)

// B
πCoker(f)

// Coker(f) // 0

We claim that there exists a homomorphism η : F0 → Im(f) such that ηf =
s1s2sσ. Indeed, since πCoker(f)δg = s1s2sϕg = πCoker(f)s1s2sτ , we have

Im(s1s2sτ − δg) ⊆ Ker(πCoker(f)) = Im(f).

Define η : F0 → Im(f) to be a homomorphism satisfying η(ei) = s1s2sτ(ei) −
δg(ei) for each i. So for each e′i ∈ F1, we have ηf(e′i) = s1s2sτf(e

′
i) −

δgf(e′i) = s1s2sτf(e
′
i). Thus iIm(f)(s1s2sσ) = s1s2siIm(f)σ = s1s2sτf =

iIm(f)ηf . Therefore, ηf = s1s2sσ. Hence s1s2sf(ai) = s1s2sσ(e
′
i) = ηf(e′i) =

η(
∑m

j=1 rijej) =
∑m

j=1 rijη(ej) with η(ej) ∈ Im(f). So we have s21s2sai =

s1s2st
′
1f(ai) =

∑m
j=1 rijt

′
1η(ej) with t′1η(ej) ∈ A for each i. □

Recall from [18, Definition 2.1] that a short u-S-exact sequence 0 → A
f−→

B
g−→ C → 0 is said to be u-S-split provided that there are s ∈ S and an

R-homomorphism t : B → A such that tf(a) = sa for any a ∈ A, that is,
tf = sIdA.

Proposition 2.3. Let ξ : 0 → A
f−→ B

g−→ C → 0 be a u-S-split short u-S-exact
sequence. Then ξ is u-S-pure.

Proof. Let t : B → A be an R-homomorphism satisfying tf = sIdA. Let
f(ai) =

∑m
j=1 rijxj be a system of equations with rij ∈ R and unknowns

x1, . . . , xm has a solution, say {bj | j = 1, . . . ,m}, in B. Then sai = tf(ai) =∑m
j=1 rijt(bj) with t(bj) ∈ A. Thus sai =

∑m
j=1 rijxj is solvable in A. So ξ is

u-S-pure by Theorem 2.2. □

Recall from [17, Definition 3.1] that an R-module F is called u-S-flat pro-
vided that for any u-S-exact sequence 0 → A → B → C → 0, the induced
sequence 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact. By [17, The-

orem 3.2], an R-module F is u-S-flat if and only if TorR1 (M,F ) is u-S-torsion
for any R-module M .

Proposition 2.4. An R-module F is u-S-flat if and only if every (u-S-)exact
sequence 0 → A → B → F → 0 is u-S-pure.

Proof. Suppose F is a u-S-flat module. Let M be an R-module and 0 → A →
B → F → 0 a short u-S-exact sequence. Then by Theorem 1.3, there is a
u-S-exact sequence TorR1 (M,F ) → M ⊗R A → M ⊗R B → M ⊗R F → 0.

Since F is u-S-flat, TorR1 (M,F ) is u-S-torsion by [17, Theorem 3.2]. Hence
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0 → M⊗RA → M⊗RB → M⊗RF → 0 is u-S-exact. So 0 → A → B → F → 0
is u-S-pure.

On the other hand, considering the exact sequence 0 → A → P → F → 0
with P projective, we have an exact sequence 0 → TorR1 (M,F ) → M ⊗R A →
M ⊗R P → M ⊗R F → 0 for any R-module M . Since 0 → A → P → F → 0
is u-S-pure, TorR1 (M,F ) is u-S-torsion. So F is u-S-flat □

Proposition 2.5. Let ξ : 0 → A → B → C → 0 be a short u-S-exact sequence,
where B is u-S-flat. Then C is u-S-flat if and only if ξ is u-S-pure.

Proof. Suppose C is u-S-flat. Then ξ is u-S-pure by Proposition 2.4.
On the other hand, let M be an R-module. Then we have a u-S-exact

sequence TorR1 (M,B) → TorR1 (M,C) → M ⊗R A → M ⊗R B → M ⊗R C → 0.

Since B is u-S-flat, TorR1 (M,B) is u-S-torsion by [17, Theorem 3.2]. Since ξ is
u-S-pure by assumption, 0 → M⊗RA → M⊗RB → M⊗RF → 0 is u-S-exact.
Then TorR1 (M,C) is also u-S-torsion. Thus C is u-S-flat by [17, Theorem 3.2]
again. □

3. Uniformly S-absolutely pure modules

Recall from [10] that an R-module E is said to be absolutely pure provided
that E is a pure submodule of every module which contains E as a submodule,
that is, any short exact sequence 0 → E → B → C → 0 beginning with E is
pure. Now we define the uniformly S-analogue of absolutely pure modules.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. An R-
module E is said to be u-S-absolutely pure (abbreviates uniformly S-absolutely
pure) provided that any short u-S-exact sequence 0 → E → B → C → 0
beginning with E is u-S-pure.

Recall from [12, Definition 4.1] that an R-module E is called u-S-injective
provided that the induced sequence

0 → HomR(C,E) → HomR(B,E) → HomR(A,E) → 0

is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. Following
from [12, Theorem 4.3], an R-module E is u-S-injective if and only if for any
short exact sequence 0 → A → B → C → 0, the induced sequence 0 →
HomR(C,E) → HomR(B,E) → HomR(A,E) → 0 is u-S-exact if and only if
Ext1R(M,E) is u-S-torsion for any R-module M if and only if ExtnR(M,E) is u-
S-torsion for any R-moduleM and n ≥ 1. Next, we characterize u-S-absolutely
pure modules in terms of u-S-injective modules.

Theorem 3.2. Let R be a ring, S a multiplicative subset of R and E an
R-module. Then the following statements are equivalent:

(1) E is u-S-absolutely pure;
(2) any short exact sequence 0 → E → B → C → 0 beginning with E is

u-S-pure;
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(3) E is a u-S-pure submodule in every u-S-injective module containing E;
(4) E is a u-S-pure submodule in every injective module containing E;
(5) E is a u-S-pure submodule in its injective envelope;
(6) there exists an element s ∈ S satisfying that for any finitely presented

R-module N , Ext1R(N,E) is u-S-torsion with respect to s;
(7) there exists an element s ∈ S satisfying that if P is finitely generated

projective, K is a finitely generated submodule of P and f : K → E
is an R-homomorphism, then there is an R-homomorphism g : P → E
such that sf = gi.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) It is obvious.
(5) ⇒ (6) Let I be the injective envelope of E. Then we have a u-S-pure

exact sequence 0 → E → I → L → 0 by (5). Then, by Theorem 2.2, there is an
element s ∈ S such that 0 → HomR(N,E) → HomR(N, I) → HomR(N,L) → 0
is u-S-exact with respect to s for any finitely presented R-module N . Since
0 → HomR(N,E) → HomR(N, I) → HomR(N,L) → Ext1R(N,E) → 0 is exact.
Hence Ext1R(N,E) is u-S-torsion with respect to s for any finitely presented
R-module N .

(6) ⇒ (1) Let s ∈ S satisfy (6). Let N be a finitely presented R-module
and 0 → E → B → C → 0 a u-S-exact sequence with respect to s1 ∈ S.
Then, by Theorem 1.4, there is a u-S-exact sequence 0 → HomR(N,E) →
HomR(N,B) → HomR(N,C) → Ext1R(N,E) with respect to s1 for any finitely
presented R-module N . By (6),

0 → HomR(N,E) → HomR(N,B) → HomR(N,C) → 0

is u-S-exact with respect to ss1 for any finitely presented R-module N . Hence
E is u-S-absolutely pure by Theorem 2.2.

(6) ⇒ (7) Let s ∈ S satisfy (6). Considering the exact sequence 0 → K
i−→

P → P/K → 0, we have the following exact sequence

HomR(P,E)
i∗−→ HomR(K,E) → Ext1R(P/K,E) → 0.

Since P/K is finitely presented, Ext1R(P/K,E) is u-S-torsion with respect to
s by (6). Hence i∗ is a u-S-epimorphism, and so sHomR(K,E) ⊆ Im(i∗).
Let f : K → E be an R-homomorphism. Then there is an R-homomorphism
g : P → E such that sf = gi.

(7) ⇒ (6) Let s ∈ S satisfy (7). Let N be a finitely presented R-module.

Then we have an exact sequence 0 → K
i−→ P → N → 0, where P is finitely

generated projective and K is finitely generated. Consider the following exact
sequence

HomR(P,E)
i∗−→ HomR(K,E) → Ext1R(N,E) → 0.

By (7), we have sHomR(K,E) ⊆ Im(i∗). Hence Ext1R(N,E) is u-S-torsion with
respect to s. □
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Proposition 3.3. Let R be a ring and S a multiplicative subset of R. Then
the following statements hold.

(1) Any absolutely pure module and any u-S-injective module are u-S-
absolutely pure.

(2) Any finite direct sum of u-S-absolutely pure modules is u-S-absolutely
pure.

(3) Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence. If A and C are
u-S-absolutely pure modules, so is B.

(4) The class of u-S-absolutely pure modules is closed under u-S-isomorph-
isms.

(5) Let 0 → A → B → C → 0 be a u-S-pure u-S-exact sequence. If B is
u-S-absolutely pure, so is B.

Proof. (1) This follows from Theorem 3.2.
(2) Suppose E1, . . . , En are u-S-absolutely pure modules. Then there exists

si ∈ S such that siExt
1
R(M,Ei) = 0 for any finitely presented R-module M

(i = 1, . . . , n). Set s = s1 · · · sn. Then

sExt1R(M,

n⊕
i=1

Ei) ∼=
n⊕

i=1

sExt1R(M,Ei) = 0.

Thus
⊕n

i=1 Ei is u-S-absolutely pure.

(3) Let 0 → A
f−→ B

g−→ C → 0 be a u-S-exact sequence. Since A and C
are u-S-absolutely pure modules, it follows by Theorem 3.2 that Ext1R(N,A)
and Ext1R(N,C) are u-S-torsion with respect to some s1, s2 ∈ S, respec-
tively, for any finitely presented R-module N . Considering the u-S-sequence
Ext1R(N,A) → Ext1R(N,B) → Ext1R(N,C) by Theorem 1.4, we have
Ext1R(N,B) is u-S-torsion with respect to s1s2 for any finitely presented R-
module N . Hence B is u-S-absolutely pure by Theorem 3.2 again.

(4) Considering the u-S-exact sequences 0 → A → B → 0 → 0 and 0 → 0 →
A → B → 0, we have A is u-S-absolutely pure if and only if B is u-S-absolutely
pure by (3).

(5) Let 0 → A → B → C → 0 be a u-S-pure u-S-exact sequence with
respect to some s ∈ S. Then, by Theorem 1.4, there exists a u-S-sequence 0 →
HomR(N,A) → HomR(N,B) → HomR(N,C) → Ext1R(N,A) → Ext1R(N,B)
with respect to s for any finitely presented R-module N . Note that the natural
homomorphism HomR(N,B) → HomR(N,C) is a u-S-epimorphism. Since B
is u-S-absolutely pure, it follows that Ext1R(N,B) is u-S-torsion with respect
to some s1 ∈ S for any finitely presented R-module N by Theorem 3.2. Then
Ext1R(N,A) is u-S-torsion with respect to ss1 for any finitely presented R-
module N . Thus A is u-S-absolutely pure by Theorem 3.2 again. □

Let p be a prime ideal of R. We say an R-module E is u-p-absolutely pure
shortly provided that E is u-(R \ p)-absolutely pure.
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Proposition 3.4. Let R be a ring and E an R-module. Then the following
statements are equivalent:

(1) E is absolutely pure;
(2) E is u-p-absolutely pure for any p ∈ Spec(R);
(3) E is u-m-absolutely pure for any m ∈ Max(R).

Proof. (1) ⇒ (2) ⇒ (3) It is obvious.
(3) ⇒ (1) Since E is m-absolutely pure for any m ∈ Max(R), we have

Ext1R(N,E) is uniformly (R \ m)-torsion for any finitely presented R-module
N . Thus for any m ∈ Max(R), there exists sm ∈ S such that smExt

1
R(N,E) = 0

for any finitely presented R-module N . Since the ideal generated by all sm is
R, Ext1R(N,E) = 0 for any finitely presented R-module N . So E is absolutely
pure. □

Recall from [17, Definition 3.12] a ring R is called uniformly S-von Neumann
regular provided there exists an element s ∈ S satisfying that for any a ∈ R
there exists r ∈ R such that sa = ra2. It was proved in [17, Theorem 3.13]
that a ring R is uniformly S-von Neumann regular if and only if any R-module
is u-S-flat.

Theorem 3.5. A ring R is uniformly S-von Neumann regular if and only if
any R-module is u-S-absolutely pure.

Proof. Suppose R is a uniformly S-von Neumann regular ring. Let M be an
R-module and I its injective envelope. Then I/M is u-S-flat by [17, Theorem
3.13]. Hence M is a u-S-pure submodule of I by Proposition 2.4. So M is
u-S-absolutely pure by Theorem 3.2.

Conversely, assume that any R-module is u-S-absolutely pure and let M
be an R-module and ξ : 0 → K → P → M → 0 an exact sequence with
P projective. Then P is u-S-flat. Since K is u-S-absolutely pure, the exact
sequence ξ is u-S-pure. By Proposition 2.5, M is also u-S-flat. Hence R is
uniformly S-von Neumann regular by [17, Theorem 3.13]. □

It follows from Proposition 3.3 that every absolutely pure module is u-S-
absolutely pure. The following example shows that the converse is not true in
general.

Example 3.6 ([17, Example 3.18]). Let T = Z2 × Z2 be a semi-simple ring
and s = (1, 0) ∈ T . Then any element a ∈ T satisfies a2 = a and 2a = 0. Let
R = T [x]/⟨sx, x2⟩ with x an indeterminate and S = {1, s̄} be a multiplicative
subset of R. Then R is a uniformly S-von Neumann regular ring, but R is
not von Neumann regular. Thus there exists a u-S-absolutely pure module M
which is not absolutely pure by Theorem 3.5.

Let R be a ring. An R-module M is said to be u-S-divisible if there exists
s ∈ S such that sM = M . Recall from [12] that a ring R is called a uniformly
S-Noetherian ring provided that there exists an element s ∈ S such that for any
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ideal J of R, sJ ⊆ K for some finitely generated sub-ideal K of J . Following
from Theorem [12, Theorem 4.10] that if S is a regular multiplicative subset
of R (i.e., the multiplicative set S is composed of non-zero-divisors), then R
is uniformly S-Noetherian if and only if any direct sum of injective modules is
u-S-injective. Now we give a new characterization of uniformly S-Noetherian
rings.

Theorem 3.7. Let R be a ring, S a regular multiplicative subset of R. Then
the following statements are equivalent:

(1) R is a uniformly S-Noetherian ring;
(2) any u-S-absolutely pure module is u-S-injective;
(3) any absolutely pure module is u-S-injective.

Proof. (1) ⇒ (2) Suppose R is a uniformly S-Noetherian ring. Let s be an
element in S such that for any ideal J of R, sJ ⊆ K for some finitely gen-
erated sub-ideal K of J . Let E be a u-S-absolutely pure module. Then
there exists s2 ∈ S such that s2Ext

1
R(N,E) = 0 for any finitely presented

R-module N . Let s1 be an element in S. Consider the induced exact se-
quence HomR(R,E) → HomR(Rs1, E) → Ext1R(R/Rs1, E) → 0. Since R/Rs1
is finitely presented, s2Ext

1
R(R/Rs1, E) = s2(E/s1E) = 0 since s1 is a non-

zero-divisor. Then s2E = s1s2E, and thus s2E is u-S-divisible. Since s2E
is u-S-isomorphic to E, s2E is also u-S-absolutely pure by Proposition 3.3.
Hence there exists s3 ∈ S such that s3Ext

1
R(N,E) = 0 for any finitely presented

R-module N . Consider the induced u-S-exact sequence HomR(J/K, s2E) →
Ext1R(R/J, s2E) → Ext1R(R/K, s2E). Since R/K is finitely presented, we have
s3Ext

1
R(R/K, s2E) = 0. Note that sHomR(J/K, s2E) = 0. Then

ss3Ext
1
R(R/J, s2E) = 0.

Since s2E is u-S-divisible, we have s2E is u-S-injective by [12, Proposition
4.9]. Since s2E is u-S-isomorphic to E, it follows that E is also u-S-injective
by [12, Proposition 4.7].

(2) ⇒ (3) It is obvious.
(3) ⇒ (1) Let {Iλ |λ ∈ Λ} be a family of injective modules. Then

⊕
λ∈Λ Iλ

is absolutely pure, and thus is u-S-injective by assumption. Consequently, R
is a uniformly S-Noetherian ring by [12, Theorem 4.10]. □

It is well-known that any direct sum and any direct product of absolutely
pure modules are also absolutely pure. However, it does not work for u-S-
absolutely pure modules.

Example 3.8. Let R = Z be the ring of integers, p a prime in Z and S =
{pn |n ≥ 0}. Then an R-module M is a u-S-absolutely pure module if and
only if it is u-S-injective by Theorem 3.7. Let Z/⟨pk⟩ be a cyclic group of order
pk (k ≥ 1). Then each Z/⟨pk⟩ is u-S-torsion, and thus is u-S-absolutely pure.
However, the product M :=

∏∞
k=1 Z/⟨pk⟩ is not u-S-injective by [12, Remark

4.6], so it is also not u-S-absolutely pure.
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We claim that the direct sum N :=
⊕∞

k=1 Z/⟨pk⟩ is also not u-S-absolutely
pure. Indeed, consider the following exact sequence induced by the short exact
sequence 0 → Z → Q → Q/Z → 0:

0 = HomZ(Q, N) → HomZ(Z, N) → Ext1Z(Q/Z, N) → Ext1Z(Q, N) → 0.

Since the submodule N = HomZ(Z, N) is not u-S-torsion, Ext1Z(Q/Z, N) is
also not u-S-torsion. Then N is not u-S-injective by [12, Theorem 4.3]. So the
direct sum N :=

⊕∞
k=1 Z/⟨pk⟩ is also not u-S-absolutely pure.

We also note that, in Theorem 3.2, the element s ∈ S in the statement (6)
(similar in the statement (7)) is uniform for all finitely presented R-modules
N .

Example 3.9. Let R = Z be the ring of integers, p a prime in Z and S =
{pn |n ≥ 0}. Let Jp be the additive group of all p-adic integers (see [5]

for example). Then Ext1R(N, Jp) is u-S-torsion for any finitely presented R-
modules N . However, Jp is not u-S-absolutely pure.

Proof. Let N be a finitely presented R-module. Then, by [5, Chapter 3, The-
orem 2.7], N ∼= Zn ⊕

⊕m
i=1(Zn/⟨pi⟩)ni ⊕ T , where T is a finitely generated

torsion S-divisible torsion-module. Thus

Ext1R(N, Jp) ∼=
m⊕
i=1

Ext1R(Zn/⟨pi⟩, Jp) ∼=
m⊕
i=1

(Jp/p
iJp) ∼=

m⊕
i=1

Zn/⟨pi⟩

by [5, Chapter 9, Section 3(G)] and [5, Chapter 1, Exercise 3(10)]. So
Ext1R(N, Jp) is obviously u-S-torsion. However, Jp is not u-S-injective by
[12, Theorem 4.5]. So Jp is not u-S-absolutely pure by Theorem 3.7. □
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