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ON UNIFORMLY S-ABSOLUTELY PURE MODULES

XIAOLEI ZHANG

ABSTRACT. Let R be a commutative ring with identity and S a multi-
plicative subset of R. In this paper, we introduce and study the notions of
u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules
which extend the classical notions of pure exact sequences and absolutely
pure modules. And then we characterize uniformly S-von Neumann reg-
ular rings and uniformly S-Noetherian rings using uniformly S-absolutely
pure modules.

1. Introduction and preliminary

Throughout this paper, R is always a commutative ring with identity, all
modules are unitary and S is always a multiplicative subset of R, that is, 1 € S
and s1s5 € S for any s1 € S, s € S.

The notion of absolutely pure modules was first introduced by Maddox [10]
in 1967. An R-module F is said to be absolutely pure provided that F is a
pure submodule of every module which contains F as a submodule. It is well-
known that an R-module E is absolutely pure if and only if Extp(N, E) = 0
for any finitely presented module N ([14, Proposition 2.6]). So absolutely pure
modules are also studied with the terminology FP-injective modules (FP for
finitely presented), see Stenstrém [14] and Jain [7] for example. The notion of
absolutely pure modules is very attractive in that it is not only a generalization
of that of injective modules but also an important tool to characterize some
classical rings. For example, a ring R is semihereditary if and only if any
homomorphic image of an absolutely pure R-module is absolutely pure ([11,
Theorem 2|); aring R is Noetherian if and only if any absolutely pure R-module
is injective ([11, Theorem 3]); a ring R is von-Neumann regular if and only if
any R-module is absolutely pure ([11, Theorem 5]); a ring R is coherent if and
only if the class of absolutely pure R-modules is closed under direct limits if
and only if the class of absolutely pure R-modules is a (pre)cover ([14, Theorem
3.2], [4, Corollary 3.5]).
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One of the most important methods to generalize the classical rings and
modules is in terms of multiplicative subsets S of R (see [1-3,8,9] for example).
In 2002, Anderson and Dumitrescu [1] introduced S-Noetherian rings R, that is,
for any ideal I of R, there exists a finitely generated sub-ideal K of I such that
sI C K. Cohen’s Theorem, Eakin-Nagata Theorem and Hilbert Basis Theorem
for S-Noetherian rings are given in [1]. However, the choice of s € S such
that sI C K in the definition of S-Noetherian rings as above is not uniform.
Hence, Qi et al. [12] introduced the notion of uniformly S-Noetherian rings
and obtained the Eakin-Nagata-Formanek Theorem and Cartan-Eilenberg-Bass
Theorem for uniformly S-Noetherian rings. Recently, the author of the paper
[17] introduced the notions of u-S-flat modules and uniformly S-von Neumann
regular rings which can be seen as uniformly S-versions of flat modules and
von Neumann regular rings. In this paper, we generalized the classical pure
exact sequences and absolutely pure modules to u-S-pure u-S-exact sequences
and u-S-absolutely pure modules, and then obtain uniformly S-versions of some
classical characterizations of pure exact sequences and absolutely pure modules
(see Theorem 2.2 and Theorem 3.2). Finally, we characterize uniformly S-von
Neumann regular rings and uniformly S-Noetherian rings using u-S-absolutely
pure modules (see Theorem 3.5 and Theorem 3.7). As our work involves the
uniformly S-torsion theory, we provide a quick review as below.

Recall from [17], an R-module T is said to be u-S-torsion (with respect to s)
provided that there exists an element s € S such that sT°= 0. An R-sequence

n Jn
"'_>An71f_>Ani>An+l_>"'

is u-S-exact if for any n there is an element s € S such that

sKer(fne+1) CIm(f,) and sIm(f,) C Ker(fnt1)-

An R-sequence 0 — A 1 B % ¢ 5 0is called a short u-S-exact sequence
(with respect to s) if sKer(g) C Im(f) and sIm(f) C Ker(g) for some s €
S. An R-homomorphism f : M — N is a u-S-monomorphism (resp. u-S-

epimorphism, u-S-isomorphism) (with respect to s) provided 0 — M i) N

(resp. M LN 0,0 M LN 0) is u-S-exact (with respect to s). Let
M and N be R-modules. We say M is u-S-isomorphic to N if there exists a
u-S-isomorphism f : M — N. A family C of R-modules is said to be closed
under u-S-isomorphisms if whenever M is u-S-isomorphic to N and M is in C,
we have N is also in C. One can deduce from the following Proposition 1.1 that
the existence of u-S-isomorphisms of two R-modules is actually an equivalence
relation.

Proposition 1.1. Let R be a ring and S a multiplicative subset of R. Suppose
there is a u-S-isomorphism f: M — N for R-modules M and N. Then there
is a u-S-isomorphism g : N — M and t € S such that f o g = tldy and
go f=tldy,.
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Proof. Consider the following commutative diagram:

0 —— Ker(f) M ! N Coker(f) ——0

N

Im(f)

with sKer(f) = 0 and sN C Im(f) for some s € S. Define g1 : N — Im(f)
by g1(n) = sn for any n € N. Then ¢; is a well-defined R-homomorphism
since sn € Im(f). Define g2 : Im(f) — M by g2(f(m)) = sm. Then g3 is a
well-defined R-homomorphism. Indeed, if f(m) = 0, then m € Ker(f) and so
sm=0. Set g =g20g1 : N = M. We claim that g is a u-S-isomorphism.
Indeed, let n be an element in Ker(g). Then sn = gi(n) € Ker(g2). Note
that sKer(ge) = 0. Thus s?n = 0. So s?Ker(g) = 0. On the other hand, let
m € M. Then g(f(m)) = g2 0 g1(f(m)) = g2(f(sm)) = s?m. Set t = s> € S.
Then go f = tIdy and tm € Im(g). So tM C Im(g). It follows that g is a
u-S-isomorphism. It is also easy to verify that fog = tIdy. O

Remark 1.2. Let R be a ring, S be a multiplicative subset of R, and M and N
be R-modules. Then the condition “there is an R-homomorphism f: M — N
such that fg : Mg — Ng is an isomorphism” does not mean “there is an
R-homomorphism g : N — M such that gg : Ng — Mg is an isomorphism”.
Indeed, let R = Z be the ring of integers, S = R — {0} and Q the quotient
field of integers. Then the embedding map f : Z — Q satisfies fg : Q — Q
is an isomorphism. However, since Homy(Q,Z) = 0, there does not exist any
R-homomorphism g : Q — Z such that gs : Q — Q is an isomorphism.

The following two results state that a short u-S-exact sequence induces long
u-S-exact sequences by the functors “Tor” and “Ext” as the classical cases.

Theorem 1.3. Let R be a ring, S a multiplicative subset of R and N an

R-module. Let 0 — A ENJEN C — 0 be a u-S-exact sequence of R-
modules. Then for any n > 1 there is an R-homomorphism &y, : Torf(C’, N) —
Tor® (A, N) such that the induced sequence

- = Tor (A, N) — Tor®(B, N) — Tor®(C, N) 2% Tor® | (A, N) —
Tor® (B,N) = -+ = TorF(C,N) 25 A@r N > B&r N — C@r N =0
is u-S-ezxact.
Proof. Since the sequence 0 — A LB % ¢ = 0is u-S-exact at B. There
are three exact sequences 0 — Ker(f) —=y A 220 1m(f) = 0, 0 —

Ker(g) =25 p Im(g) — 0 and 0 — Im(g) —< ¢
Coker(g) — 0 with Ker(f) and Coker(g) u-S-torsion. There also exists s € S
such that sKer(g) C Im(f) and sIm(f) C Ker(g). Denote T' = Ker(f) and
T’ = Coker(g).

Tim(g) TCoker(g)
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Firstly, consider the exact sequence

TorZ (itm(gy, N
Tor},,(T',N) — Tor} (Im(g), N) Tt () N o R(C,N) = Tor®(T', N).

Since T" is u-S-torsion, Tork, (7", N) and Tor? (T, N) is u-S-torsion. Thus
TorR(iIm( ), N) is a u-S-isomorphism. So there is also a u-S-isomorphism

M) Tor’(C, N) — TorZ(Im(g), N) by Proposition 1.1. Consider the exact

sequence:

Tor®® | (T1m( ), N
Tor® (T, N) — Tor® (A, N) Torn—1 (M), M), Tor® | (Im(f),N) — Tor (T, N).

Since T is u-S-torsion, we have Torﬁfl(ﬂlm(f),]\f) is a u-S-isomorphism. So
there is also a u-S-isomorphism hﬁ;(lf) : Tor’ | (Im(f), N) — Tor® (A, N) by
Proposition 1.1. We have two exact sequences

Tor} (ilker(g)+N)
Tor®, | (T1, N) — Tor®(sKer(g), N) — " TorR (Im(f), N) — Tor®, | (T3, N)
and

Tor (i24gr ) N)
Tor®, Ty, N) — Tor(sKer(g), N) Torn Gaeorte) M), Tor® (Ker(g), N) — Tor, | (T3, N),

where 71 = Im(f)/sKer(g) and To = Im(f)/sIm(f) is u-S-torsion. So
TorR( 'iKer(g), N) and TorR('iKer(g)7 N) are u-S-isomorphisms. Thus there is a

u-S-isomorphism A, o : . Tor®(Ker(g), N) — Tor¥(sKer(g), N). Note that
there is an exact sequence

TorE (Ttm (), N)
o

R éﬁn(g) R
Tor (B,N) Tor,, (Im(g), N) —— Tor,,_;(Ker(g), N)
Tor§7 (iKer(g) V)
_inm1 i PRer(g)y T, 5—1(Ba N).
Set bn = hAl(g) © Otm(g) © Phicer(q) © Torf’(iiKer(g) N)o hﬁn(lf) Tor®(C,N) —

R (A N). Since hIm(g),dlm(g),thcr(g) and hh;(f) are u-S-isomorphisms,
we have the sequence

Tor(B, N) — Tor®(C, N) 25 Tor®_| (A, N) — Tor® (B, N)
is u-S-exact.
Secondly, consider the exact sequence:

) Tork (itm(s),N)
LS LML

Torn+1(T N) — Tor®(A, N TorZ(Im(f), N) — Tor®(T, N).

Since T is u-S-torsion, Torn (itm(f), N) is a u-S-isomorphism. Consider the
exact sequences:

Torl (iker(g),N)
R

Tor, | (Im(g), N) — Tor%(Ker(g), N) Tor?(B, N) — Torf(Im(g), N)

and

) Torf(ilm(g),N)
_—

Torf, (T', N) — Tor}(Im(g), N Tor(C, N) — Tor?(T", N).
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Since T" is u-S-torsion, we have Torff(ilm(g),N) is a u-S-isomorphism. Since

Torff(iiKer(g), N) and Tor,}f(iiKer(g), N) are wu-S-isomorphisms as above,

Torf(A, N) — Tor(B, N) = Tor®(C, N) is u-S-exact at TorZ(B, N).
Iterating the above steps, we have the following u-S-exact sequence:

- = Tor® (A, N) — Torf(B, N) — Tor?(C, N) On, Tor? | (A,N) —

Tor® (B,N) = -+ — Tor®(C,N) 25 A®xr N - Bor N — C @ N — 0.
O

Similarly to the proof of Theorem 1.3, we can deduce the following result.

Theorem 1.4. Let R be a ring, S be a multiplicative subset of R, and M

and N be R-modules. Suppose 0 — A i> B L C = 0 is a u-S-ezxact
sequence of R-modules. Then for any n > 1 there are R-homomorphisms

6n @ Exti 1 (M,C) — Exth(M,A) and 6" : Exty '(A,N) — Exth(C,N)
such that the induced sequences
0 — Homp(M, A) — Homp (M, B) — Homp(M, C) 2% Exth(M, A) = -+ —
Ext? (M, B) - Ext? ' (M, C) 2= Ext}y(M, A) — Ext}y (M, B) — - --
and
0 = Homp(C, N) — Homp(B, N) — Homp(4, N) 25 ExtL(C,N) = --- —
Ext? (B, N) — Ext? (A, N) &5 Ext}(C, N) — Ext}y(B,N) — - --

are u-S-exact.

2. u-S-pure u-S-exact sequences

Recall from [13] that an exact sequence 0 - A — B — C — 0 is said
to be pure provided that for any R-module M, the induced sequence 0 —
M®rA— M®rB — M®rC — 0 is also exact. Now we introduce the
uniformly S-version of pure exact sequences.

Definition 2.1. Let R be a ring and S a multiplicative subset of R. A short
u-S-exact sequence 0 — A — B — C — 0 is said to be u-S-pure provided
that for any R-module M, the induced sequence 0 - M @ A - M ®r B —
M ®pr C — 0 is also u-S-exact.

Obviously, any pure exact sequence is u-S-pure. In [16, 34.5], there are many
characterizations of pure exact sequences. The next result generalizes some of
these characterizations to u-S-pure u-S-exact sequences.

Theorem 2.2. Let 0 — A Lp L, C — 0 be a short u-S-exact sequence of
R-modules. Then the following statements are equivalent:

(1) 0= A LBlics0isa u-S-pure u-S-exact sequence;
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(2) there exists an element s € S satisfying that if a system of equa-

tions f(a;) = Z;”:l rijz; (i =1,...,n) with r;; € R and unknowns
Z1,-.-,Tm has a solution in B, then the system of equations sa; =
Z;":l rijz; (i =1,...,n) is solvable in A;

(3) there exists an element s € S satisfying that for any given commuta-
tive diagram with F finitely generated free and K a finitely generated
submodule of F', there exists a homomorphism n : F — A such that
s = ni;

0— > K —*+>
Ve

F

a . :] \LB

A

(4) there exists an element s € S satisfying that for any finitely presented
R-module N, the induced sequence 0 — Homp(N, A) — Hompg (N, B)
— Homp (N, C) — 0 is u-S-exact with respect to s.

Proof. (1) = (2) Set I' = {(K,R™)| K is a finitely generated submodule of

R™ and n < co}. Define M = @ puyer R*/K. Then 0 — M @p A~
M ®r B - M ®p C — 0 is u-S-exact by (1). So there is an element s € S
such that sKer(1y; ® f) = 0. Hence sKer(1zn/x ® f) = 0 for any (K, R") € T.
Now assume that there exists b € B such that f(a;) = Y27", ri;b; for any
j=1,...,m. Let F be a free R-module with a basis {e1,...,e,}, and let
K C F be the submodule generated by m elements {> . | rije; |j =1,...,m}.
Then, F/K is generated by {e1+K, ..., e,+K}. Note that """ | r;(e; +K) =
S rijei+ K =0+ K in F/K. Hence, we have

S+ K) @ fla) = > (e + K) (3 rihy)
i=1 i=1 =1
= ((ZTij(ei-i-K))@bj):O
j=1 i=1

in F/K®B. Andso Y. | ((e;+K)®a;) € Ker(1p/x @ f). Hence, s 31" | ((e;+
K)®a) = Y ((e; + K) ® sa;) = 0in F/K @r A. By [6, Chapter I,
Lemma 6.1], there exist d; € A and ¢;; € R such that sa;, = 22:1 linds, and
S lik(ei+ K) =0, and so i lire; € K. Then there exists ¢;;, € R such
that ZZ‘L:I likei = Zznzl tjk(zzlﬂ rijei) = Z?zl(zgnzl(tjkmj)ei). Since F' is
free, we have l;, = Z;nzl rijt;,. Hence

t t m m t
sa; = Z lirdy = Z(Z rijtin)di = Z”J‘<Z tjndi)
k=1 k=1 j=1 =1 k=l

with 22:1 tikdr € A. That is, sa; = Z;ﬂ:l ri;x; is solvable in A.
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(2) = (1) Let s € S satisfying (2) and M be an R-module. Then we have a

u-S-exact sequence M ®p A — 1o/, M®@rB— M®rC — 0 by Theorem 1.3.
We will show that Ker(1 ® f) is u-S- torsmn Let {ZZ Lu} ®@a}| A € A} be
the generators of Ker(1 ® f). Then Y/ u} ® f( M) =0in M ®p B for each
A € A. By [6, Chapter I, Lemma 6.1], there exist r . € R and b’\ € B such that
flap) = 3272 rsby and Y72 upry = 0 for each )\ € A So sa} = 3 rag
have a solution, say a? in A by (2). Then

LN
Zu ®a Zu ®saf‘

i=1
3N mox

= w o rye)
i=1 j=1
my nx

= (O _ryud) @ay)
j=1 i=1

=0

for each A\ € A. Hence sKer(1® f) =0, and 0 = M ®p A - M ®r B —
M ®pr C — 0 is u-S-exact.

(2) = (3) Let s € S satisfying (2) and {ey, ..., e, } the basis of F. Suppose K
is generated by {y; = 37 rije; [i =1,...,m}. Set B(e;) = b; and a(y;) = a;
for each i and j. Then f(a;) = Y_7°, ri;bj. By (2), we have sa; = 377", r4;d;
for some d; € A. Let ) : ' — A be the R-homomorphism satisfying n(e;) = d;.
Then ni(y;) = My rijeg) = YTy rign(e;) = 37k rijd; = sa; = sa(yi),
and so we have sa = 1.

(3) = (4) Let s € S satisfy (3). Note that A is u-S-isomorphic to Im(f) and
C' is u-S-isomorphic to Coker(f). Thus, by Proposition 1.1, we have homomor-
phisms ¢y : A — Im(f) with ¢;(a) = f(a) forany a € Aand ¢} : Im(f) — A such
that 1t = s1Idpy () and tit; = s11d4, and homomorphisms ¢ : Coker(f) —
C and t, : C — Coker(f) such that f" = tomcoker(s), tothy = s2lde and
tota = saldcoker(y) for some si,s2 € S, where Teoker(s) @ B — Coker(f)
is the natural epimorphism. Let N be a finitely presented R-module with
0— K — F — N — 0 exact, where F is finitely generated free and K finitely
generated. Let v be a homomorphism in Hompg (N, C). Considering the exact
sequence 0 — Im(f) — B — Coker(f) — 0, we have the following commutative
diagram with rows exact:

0 K—" ,p__ ™ _N 0

I e

0 ——Im(f) Coker(f) ——=0

Im(f) TCoker(f)
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By (3), there exists an homomorphism 7 : F — A such that st/h = nig. So
ss1h = stitih = t1nix. So the following diagram is also commutative:

0 K—"™ . p__ ™ _N 0

-
r
ss1h ssig 7 ss1toy
tin 2~ - 0

k —
ilm(f) WCoker(gO er(f) 0

So by [15, Exercise 1.60], there is an R-homomorphism § : N — B such that
SSlt/Q’y = ’R'Coker(f)(s. So 581827 = 881t2t12’y = tZWCoker(f)(s = f’5 = f’*(é)
Hence f* : Homg (N, B) — Hompg(N,C) is a u-S-epimorphism with respect
to ss1s2. Consequently, one can verify the R-sequence 0 — Hompg(N, A) —
Hompg(N, B) — Hompg (N, C) — 0 is u-S-exact with respect to ss1s2 by Theo-
rem 1.4. )

(4) = (2) Let s € S satisfying (4) and 0 — A LB L ¢ 5 0 a short
u-S-exact sequence of R-modules. Similarly to the proof of (3) = (4), we have
homomorphisms t; : A — Im(f) with t;(a) = f(a) for any a € A and ¢} :
Im(f) — A such that t;¢} = s1Idpy(s) and t}t; = s11d4, and homomorphisms
ty : Coker(f) — C and t; : C' — Coker(f) such that f' = tomcoker(s), tath =
soldo and tyty = soldgoker(s) for some sy, s0 € S, where Tooker(r) @ B —
Coker(f) is the natural epimorphism.

Suppose that f(a;) = Z;":l ri;b; (1 =1,...,n) with a; € A, b; € B and
ri; € R. Let Fy be a free module with a basis {e1, ..., e, } and F; a free module
with basis {e],...,e},}. Then there are R-homomorphisms 7 : F; — B and
o : Fy — Im(f) satisfying 7(e;) = b; and o(e}) = f(a;) for each ¢, j. Define an
R-homomorphism h : Fy — Fy by h(e}) = >""" | r;je; for each i. Then 7h(e}) =
Z;”Zl ri;T(e;) = Z;”:l ri;jb; = f(a;) = o(e}). Set N = Coker(h). Then N is
finitely presented. Thus there exists a homomorphism ¢ : N — Coker(f) such
that the following diagram commutative:

N 0

/| |- I

0 ——Im(f) Coker(f) ——0

itm(f) T Coker(f)

Note that the induced sequence
0 — Homp(N,Im(f)) — Homp(N, B) - Hompg(N, Coker(f)) — 0

is u-S-exact with respect to s1s2s by (4). Hence there exists a homomorphism
§ : N — Coker(f) such that s1525¢ = Tcoker(s)0- Consider the following
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commutative diagram:

h

) B N 0
-
slszsol p /77/ is% islszsqb
0 ——Im(f) - B Coker(f) —0
iTm(f) T Coker(f)

We claim that there exists a homomorphism 7 : Fy — Im(f) such that nf =
s18250. Indeed, since Tooker(£)09 = 5152809 = TCoker(f)S1528T, We have

Im(s18257 — 0g) C Ker(Tooker(s)) = Im(f).

Define 7 : Fy — Im(f) to be a homomorphism satisfying n(e;) = s1s257(e;) —
dg(e;) for each i. So for each e, € Fi, we have nf(e}) = sis2s7f(e}) —
dgf(e;) = s1sastf(e;). Thus ilm(f)(slsgso) = 51528im(5)0 = S1825Tf =
im(s)nf. Therefore, nf = si1s250. Hence s1s25f(a;) = si1s250(ej) = nf(e;) =
(i rijes) = Doty rign(e;) with n(e;) € Im(f). So we have s2s98a; =
sis2sty fa;) = 2251, rijtin(e;) with ¢1n(e;) € A for each i. O

Recall from [18, Definition 2.1] that a short u-S-exact sequence 0 — A ER
B % C — 0 is said to be u-S-split provided that there are s € S and an
R-homomorphism ¢ : B — A such that tf(a) = sa for any a € A, that is,
tf = SIdA.

Proposition 2.3. Let:0— A L BSC0bea u-S-split short u-S-ezxact
sequence. Then & is u-S-pure.

Proof. Let t : B — A be an R-homomorphism satisfying ¢tf = slds. Let
fla;) = Z;’;l rijz; be a system of equations with 7;; € R and unknowns
Z1,...,%m has a solution, say {b;|j = 1,...,m}, in B. Then sa; = tf(a;) =
> i Tijt(by) with ¢(b;) € A. Thus sa; = 377", rijx; is solvable in A. So € is
u-S-pure by Theorem 2.2. O

Recall from [17, Definition 3.1] that an R-module F' is called u-S-flat pro-
vided that for any u-S-exact sequence 0 - A — B — C — 0, the induced
sequence 0 > A®r F - Br F —» C ®r F — 0 is u-S-exact. By [17, The-
orem 3.2], an R-module F' is u-S-flat if and only if Torf (M, F) is u-S-torsion
for any R-module M.

Proposition 2.4. An R-module F is u-S-flat if and only if every (u-S-)exact
sequence 0 - A — B — F' — 0 is u-S-pure.

Proof. Suppose F is a u-S-flat module. Let M be an R-module and 0 — A —
B — F — 0 a short u-S-exact sequence. Then by Theorem 1.3, there is a
u-S-exact sequence Torf(M,F) —+ M®rA - M®rB —- M®rF — 0.
Since F is u-S-flat, Torf(M, F) is u-S-torsion by [17, Theorem 3.2]. Hence
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0= M®rA — M®rB — M®QrF — 0is u-S-exact. So0 4 A — B — F —=0
is u-S-pure.

On the other hand, considering the exact sequence 0 -+ A - P — F — 0
with P projective, we have an exact sequence 0 — Tor{%(M, F)—> M®rA—
M®@rP — M®grF — 0 for any R-module M. Since0 - A — P - F — 0
is u-S-pure, Torl*(M, F) is u-S-torsion. So F is u-S-flat O

Proposition 2.5. Let£: 0 — A — B — C — 0 be a short u-S-ezxact sequence,
where B is u-S-flat. Then C is u-S-flat if and only if £ is u-S-pure.

Proof. Suppose C' is u-S-flat. Then £ is u-S-pure by Proposition 2.4.

On the other hand, let M be an R-module. Then we have a u-S-exact
sequence Tor’'(M, B) — Torf(M,C) - M @r A — M @r B — M @z C — 0.
Since B is u-S-flat, Torf(M, B) is u-S-torsion by [17, Theorem 3.2]. Since & is
u-S-pure by assumption, 0 > MQrA - M®rB — M®prF — 0 is u-S-exact.
Then Torf (M, C) is also u-S-torsion. Thus C' is u-S-flat by [17, Theorem 3.2]
again. [

3. Uniformly S-absolutely pure modules

Recall from [10] that an R-module F is said to be absolutely pure provided
that F is a pure submodule of every module which contains E as a submodule,
that is, any short exact sequence 0 - E — B — C' — 0 beginning with F is
pure. Now we define the uniformly S-analogue of absolutely pure modules.

Definition 3.1. Let R be a ring and S a multiplicative subset of R. An R-
module F is said to be u-S-absolutely pure (abbreviates uniformly S-absolutely
pure) provided that any short u-S-exact sequence 0 - E — B — C — 0
beginning with E is u-S-pure.

Recall from [12, Definition 4.1] that an R-module E is called u-S-injective
provided that the induced sequence

0 — Hompg(C, E) — Homp(B, E) — Homgr(A4, E) — 0

is u-S-exact for any u-S-exact sequence 0 - A — B — C — 0. Following
from [12, Theorem 4.3], an R-module E is u-S-injective if and only if for any
short exact sequence 0 - A — B — C' — 0, the induced sequence 0 —
Hompg(C, E) — Hompg(B, E) - Hompg(A, E) — 0 is u-S-exact if and only if
Extk(M, E) is u-S-torsion for any R-module M if and only if Ext’ (M, E) is u-
S-torsion for any R-module M and n > 1. Next, we characterize u-S-absolutely
pure modules in terms of u-S-injective modules.

Theorem 3.2. Let R be a ring, S a multiplicative subset of R and E an
R-module. Then the following statements are equivalent:
(1) E is u-S-absolutely pure;
(2) any short exact sequence 0 — E — B — C — 0 beginning with E is
u-S-pure;
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(3) E is a u-S-pure submodule in every u-S-injective module containing E;

(4) E is a u-S-pure submodule in every injective module containing E;

(5) E is a u-S-pure submodule in its injective envelope;

(6) there exists an element s € S satisfying that for any finitely presented
R-module N, Exty(N, E) is u-S-torsion with respect to s;

(7) there exists an element s € S satisfying that if P is finitely generated
projective, K is a finitely generated submodule of P and f : K — E
is an R-homomorphism, then there is an R-homomorphism g: P — E
such that sf = gi.

Proof. (1) = (2) = (3) = (4) = (5) It is obvious.

(5) = (6) Let I be the injective envelope of E. Then we have a u-S-pure
exact sequence 0 = E — I — L — 0 by (5). Then, by Theorem 2.2, there is an
element s € S such that 0 — Homg(N, E) — Homg(N,I) — Homg(N,L) — 0
is u-S-exact with respect to s for any finitely presented R-module N. Since
0 — Homp(N, E) — Hompg(N, I) — Homg(N, L) — ExtR(N, E) — 0 is exact.
Hence Ext}%(N ,E) is u-S-torsion with respect to s for any finitely presented
R-module N.

(6) = (1) Let s € S satisfy (6). Let N be a finitely presented R-module
and 0 - F —- B — C — 0 a u-S-exact sequence with respect to s; € S.
Then, by Theorem 1.4, there is a u-S-exact sequence 0 — Hompg(N,E) —
Hompg (N, B) — Hompg(N, C) — Extk (N, E) with respect to s; for any finitely
presented R-module N. By (6),

0 — Hompg (N, E) - Hompg(N, B) — Homgr(N,C) — 0

is u-S-exact with respect to ss; for any finitely presented R-module N. Hence
E is u-S-absolutely pure by Theorem 2.2.

(6) = (7) Let s € S satisfy (6). Considering the exact sequence 0 — K
P — P/K — 0, we have the following exact sequence

Homp (P, E) < Homp(K, E) — ExtL(P/K, E) — 0.

Since P/K is finitely presented, Ext}%(P/K, E) is u-S-torsion with respect to
s by (6). Hence i, is a u-S-epimorphism, and so sHomp(K,E) C Im(i,).
Let f: K — FE be an R-homomorphism. Then there is an R-homomorphism
g : P — FE such that sf = gi.

(7) = (6) Let s € S satisfy (7). Let N be a finitely presented R-module.

Then we have an exact sequence 0 — K — P — N — 0, where P is finitely
generated projective and K is finitely generated. Consider the following exact
sequence

Hompg (P, E) 2 Homg (K, E) — Exth(N, E) — 0.

By (7), we have sHomp(K, E) C Im(i,). Hence Exth(N, E) is u-S-torsion with
respect to s. (I
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Proposition 3.3. Let R be a ring and S a multiplicative subset of R. Then
the following statements hold.

(1) Any absolutely pure module and any u-S-injective module are u-S-
absolutely pure.

(2) Any finite direct sum of u-S-absolutely pure modules is u-S-absolutely
pure.

(3) Let 0 — A LB % ¢ =0 be au-S-ezact sequence. If A and C are
u-S-absolutely pure modules, so is B.

(4) The class of u-S-absolutely pure modules is closed under u-S-isomorph-
18MS.

(5) Let 0 > A — B — C — 0 be a u-S-pure u-S-ezxact sequence. If B is
u-S-absolutely pure, so is B.

Proof. (1) This follows from Theorem 3.2.

(2) Suppose Ej, ..., E, are u-S-absolutely pure modules. Then there exists
s; € S such that siExt}%(M, E;) = 0 for any finitely presented R-module M
(i=1,...,n). Set s =81 --8,. Then
sExt, (M, D Ei) = @B sExty(M, E;) = 0.

i=1 i=1
Thus @, E; is u-S-absolutely pure.

(3) Let 0 — A LB % ¢ = 0be a u-S-exact sequence. Since A and C
are u-S-absolutely pure modules, it follows by Theorem 3.2 that Extk(N, A)
and Exth(N,C) are u-S-torsion with respect to some 1,89 € S, respec-
tively, for any finitely presented R-module N. Considering the u-S-sequence
Extyn(N,A) — Extp(N,B) — Extp(N,C) by Theorem 1.4, we have
Ext}{(N , B) is u-S-torsion with respect to syso for any finitely presented R-
module N. Hence B is u-S-absolutely pure by Theorem 3.2 again.

(4) Considering the u-S-exact sequences 0 + A - B —0—0and 0 — 0 —
A — B — 0, we have A is u-S-absolutely pure if and only if B is u-S-absolutely
pure by (3).

(5) Let 0 > A — B — C — 0 be a u-S-pure u-S-exact sequence with
respect to some s € S. Then, by Theorem 1.4, there exists a u-S-sequence 0 —
Homp(N, A) — Hompg (N, B) — Hompg(N,C) — Exty(N,A) — Exty(N, B)
with respect to s for any finitely presented R-module N. Note that the natural
homomorphism Homp(N, B) — Hompg(N, C) is a u-S-epimorphism. Since B
is u-S-absolutely pure, it follows that Extk(N, B) is u-S-torsion with respect
to some s; € S for any finitely presented R-module N by Theorem 3.2. Then
Ext}{(N ,A) is u-S-torsion with respect to ss; for any finitely presented R-
module N. Thus A is u-S-absolutely pure by Theorem 3.2 again. (]

Let p be a prime ideal of R. We say an R-module E is u-p-absolutely pure
shortly provided that E is u-(R \ p)-absolutely pure.



ON UNIFORMLY S-ABSOLUTELY PURE MODULES 533

Proposition 3.4. Let R be a ring and E an R-module. Then the following
statements are equivalent:

(1) E is absolutely pure;
(2) E is u-p-absolutely pure for any p € Spec(R);
(3) E is u-m-absolutely pure for any m € Max(R).

Proof. (1) = (2) = (3) It is obvious.

(3) = (1) Since E is m-absolutely pure for any m € Max(R), we have
Exth(N, E) is uniformly (R \ m)-torsion for any finitely presented R-module
N. Thus for any m € Max(R), there exists sy, € S such that s Extp(N, E) =0
for any finitely presented R-module N. Since the ideal generated by all sy, is
R, Ext}%(N7 E) = 0 for any finitely presented R-module N. So E is absolutely
pure. O

Recall from [17, Definition 3.12] a ring R is called uniformly S-von Neumann
regular provided there exists an element s € S satisfying that for any a € R
there exists r € R such that sa = ra?. It was proved in [17, Theorem 3.13]
that a ring R is uniformly S-von Neumann regular if and only if any R-module
is u-S-flat.

Theorem 3.5. A ring R is uniformly S-von Neumann reqular if and only if
any R-module is u-S-absolutely pure.

Proof. Suppose R is a uniformly S-von Neumann regular ring. Let M be an
R-module and [ its injective envelope. Then I/M is u-S-flat by [17, Theorem
3.13]. Hence M is a u-S-pure submodule of I by Proposition 2.4. So M is
u-S-absolutely pure by Theorem 3.2.

Conversely, assume that any R-module is u-S-absolutely pure and let M
be an R-module and £ : 0 - K — P — M — 0 an exact sequence with
P projective. Then P is u-S-flat. Since K is u-S-absolutely pure, the exact
sequence ¢ is u-S-pure. By Proposition 2.5, M is also u-S-flat. Hence R is
uniformly S-von Neumann regular by [17, Theorem 3.13]. (]

It follows from Proposition 3.3 that every absolutely pure module is u-S-
absolutely pure. The following example shows that the converse is not true in
general.

Example 3.6 ([17, Example 3.18]). Let T' = Zy x Zy be a semi-simple ring
and s = (1,0) € T. Then any element a € T satisfies a> = a and 2a = 0. Let
R = T[z]/{sx,2?) with  an indeterminate and S = {1,5} be a multiplicative
subset of R. Then R is a uniformly S-von Neumann regular ring, but R is
not von Neumann regular. Thus there exists a u-S-absolutely pure module M
which is not absolutely pure by Theorem 3.5.

Let R be a ring. An R-module M is said to be u-S-divisible if there exists
s € S such that sM = M. Recall from [12] that a ring R is called a uniformly
S-Noetherian ring provided that there exists an element s € S such that for any



534 X. ZHANG

ideal J of R, sJ C K for some finitely generated sub-ideal K of J. Following
from Theorem [12, Theorem 4.10] that if S is a regular multiplicative subset
of R (i.e., the multiplicative set S is composed of non-zero-divisors), then R
is uniformly S-Noetherian if and only if any direct sum of injective modules is
u-S-injective. Now we give a new characterization of uniformly S-Noetherian
rings.

Theorem 3.7. Let R be a ring, S a regular multiplicative subset of R. Then
the following statements are equivalent:

(1) R is a uniformly S-Noetherian ring;

(2) any u-S-absolutely pure module is u-S-injective;

(3) any absolutely pure module is u-S-injective.

Proof. (1) = (2) Suppose R is a uniformly S-Noetherian ring. Let s be an
element in S such that for any ideal J of R, sJ C K for some finitely gen-
erated sub-ideal K of J. Let E be a u-S-absolutely pure module. Then
there exists s; € S such that spExtp(N,E) = 0 for any finitely presented
R-module N. Let s; be an element in S. Consider the induced exact se-
quence Hompg (R, E) — Hompg(Rsy, E) — Exth(R/Rs1, E) — 0. Since R/Rs;
is finitely presented, syExth(R/Rsi, E) = s2(E/s1E) = 0 since s; is a non-
zero-divisor. Then soF = s1s9F, and thus soF is u-S-divisible. Since soF
is u-S-isomorphic to E, soF is also u-S-absolutely pure by Proposition 3.3.
Hence there exists s3 € S such that s;;Ext}%(N , E) = 0 for any finitely presented
R-module N. Consider the induced u-S-exact sequence Homp(J/ K, soF) —
Exth(R/J, soE) — Exth(R/K, soE). Since R/K is finitely presented, we have
s3Exth(R/K, soE) = 0. Note that sHomp(J/K, soE) = 0. Then

s53Exth(R/J, soE) = 0.

Since s E is u-S-divisible, we have soF is u-S-injective by [12, Proposition
4.9]. Since s F is u-S-isomorphic to E, it follows that E is also u-S-injective
by [12, Proposition 4.7].

(2) = (3) It is obvious.

(3) = (1) Let {Ix|A € A} be a family of injective modules. Then @, Ix
is absolutely pure, and thus is u-S-injective by assumption. Consequently, R
is a uniformly S-Noetherian ring by [12, Theorem 4.10]. d

It is well-known that any direct sum and any direct product of absolutely
pure modules are also absolutely pure. However, it does not work for u-S-
absolutely pure modules.

Example 3.8. Let R = Z be the ring of integers, p a prime in Z and S =
{p™|n > 0}. Then an R-module M is a u-S-absolutely pure module if and
only if it is u-S-injective by Theorem 3.7. Let Z/(p*) be a cyclic group of order
p* (k> 1). Then each Z/{p*) is u-S-torsion, and thus is u-S-absolutely pure.
However, the product M := [[;=, Z/{p*) is not u-S-injective by [12, Remark
4.6], so it is also not u-S-absolutely pure.
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We claim that the direct sum N := ;2 , Z/(p*) is also not u-S-absolutely
pure. Indeed, consider the following exact sequence induced by the short exact
sequence 0 - Z — Q —» Q/Z — 0:

0 = Homyz(Q, N) — Homg(Z, N) — Ext}(Q/Z, N) — Ext%(Q, N) — 0.

Since the submodule N = Homg(Z, N) is not u-S-torsion, Extz(Q/Z, N) is
also not u-S-torsion. Then N is not u-S-injective by [12, Theorem 4.3]. So the
direct sum N := @;-, Z/(p") is also not u-S-absolutely pure.

We also note that, in Theorem 3.2, the element s € S in the statement (6)

(similar in the statement (7)) is uniform for all finitely presented R-modules
N.

Example 3.9. Let R = Z be the ring of integers, p a prime in Z and S =
{p™|n > 0}. Let J, be the additive group of all p-adic integers (see [5]
for example). Then Ext}%(N ,Jp) is u-S-torsion for any finitely presented R-
modules N. However, J, is not u-S-absolutely pure.

Proof. Let N be a finitely presented R-module. Then, by [5, Chapter 3, The-
orem 2.7, N =2 Z" & @.",(Z"/{p"))" @ T, where T is a finitely generated

torsion S-divisible torsion—module Thus
m

Exth(N, J,) @ExtRZ”/ %@ T/ 1) = P/

=1
by [5, Chapter 9, Sectlon 3(G)] and [5, Chapter 1, Exercise 3(10)]. So
EXt}%(N, Jp) is obviously u-S-torsion. However, J, is not w-S-injective by
[12, Theorem 4.5]. So J, is not u-S-absolutely pure by Theorem 3.7. O
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