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Abstract. In this paper, we define a new kind of formal power series rings by using

Gaussian binomial coefficients and investigate some properties. More precisely, we call

such a ring a Gaussian series ring and study McCoy’s theorem, Hermite properties and

Noetherian properties.

1. Introduction

1.1. Gaussian binomial coefficients

Let N0 be the set of nonnegative integers, q a prime power, and GF(q) the
Galois field with q elements. For n, k ∈ N0 with n ≥ k, the Gaussian binomial
coefficient (or q-binomial coefficient) is defined to be the number of k-dimensional

subspaces of an n-dimensional vector space over GF(q), and is denoted by

[
n
k

]
q

. It

* Corresponding Author.
Received May 2, 2017; accepted August 2, 2017.
2010 Mathematics Subject Classification: 13A05, 13A15, 13E05.
Key words and phrases: Gaussian series ring, q-torsion-free, McCoy’s theorem, right K-
Hermite ring, L-Hermite ring, Noetherian ring.
The authors sincerely thank the referee for several valuable comments. The third author
was supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2017R1C1B1008085).

419



420 E. S. Kim, S. M. Lee, and J. W. Lim

is well known that for n, k ∈ N0 with n ≥ k,[
n
k

]
q

=

{
(qn−1)(qn−1−1)···(qn−k+1−1)

(qk−1)(qk−1−1)···(q−1)
if k ≥ 1

1 if k = 0.

For an n ∈ N0 and a prime power q, the q-bracket (or q-number) is given by

[n]q =

{
qn−1
q−1 if n ≥ 1

1 if n = 0,

and the q-factorial is defined to be

[n]q! =

{
[n]q[n− 1]q · · · [1]q if n ≥ 1

1 if n = 0.

Then for all n, k ∈ N0 with n ≥ k and a prime power q, we obtain[
n
k

]
q

=
[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
=

[n]q!

[k]q![n− k]q!
.

For n, k ∈ N0,

(
n
k

)
denotes the binomial coefficient and n! means the factorial.

Note that if we regard the Gaussian binomial coefficient as a function of the real
variable q (where n and k are fixed nonnegative integers with n ≥ k), then easy

calculation shows that limq→1

[
n
k

]
q

=

(
n
k

)
and limq→1[n]q! = n!; so the Gaus-

sian binomial coefficient (resp., q-factorial) can be viewed as the q-analogue of the
binomial coefficient (resp., factorial).

For more on Gaussian binomial coefficients, the readers can refer to [2, Section
9.2].

1.2. Motivation

A study of ring extensions is one of important topics in commutative algebra. In
particular, it has been actively studied how to extend some properties of base rings
to formal power series rings. In [5], Keigher investigated a special kind of formal
power series rings, which is the so-called Hurwitz series ring. Later, the author in
[6] found out that Hurwitz in [3] first considered the product of power series by
using binomial coefficients, and called it a Hurwitz series in order to celebrate the
contribution of Hurwitz.

We now review the definition of Hurwitz series rings. Let R be a commutative
ring with identity and H(R) the set of formal power series over R. Define the
addition + and the multiplication ∗ on H(R) as follows: For f =

∑∞
n=0 anX

n, g =∑∞
n=0 bnX

n ∈ H(R),

f + g :=
∞∑

n=0

(an + bn)Xn and f ∗ g :=
∞∑

n=0

cnX
n,
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where cn =
∑n

i=0

(
n
i

)
aibn−i. Then H(R) becomes a commutative ring with iden-

tity under these operations and is called the Hurwitz series ring over R. It was
shown in [6, Propositions 2.3 and 2.4] that the Hurwitz series ring is isomorphic to
the formal power series ring if and only if the base ring contains the field of rational
numbers; so Hurwitz series rings generally have different algebraic structures from
formal power series rings.

In [1], Benhissi and Koja studied several properties of Hurwitz series rings
including McCoy’s theorem and Noetherian properties. In [9], Liu investigated L-
Hermite property of Hurwitz series rings. In [8], the authors studied chain conditions
on composite Hurwitz series rings.

Motivated by the construction of Hurwitz series rings and the relation between
the binomial coefficient and the Gaussian binomial coefficient, in this paper, we
define a new kind of formal power series rings and call it the Gaussian series ring.
(Definition of Gaussian series rings will be given in Section 2.) We also study
McCoy’s theorem, Hermite properties, and Noetherian properties in Gaussian series
rings.

2. Basic Results

In this section, we define the notion of Gaussian series rings and study some
properties. Let R be a commutative ring with identity, q a prime power, and Gq(R)
the set of formal power series over R. Define the addition + and the multiplication
⋆ on Gq(R) as follows: For f =

∑∞
n=0 anX

n, g =
∑∞

n=0 bnX
n ∈ Gq(R),

f + g :=
∞∑

n=0

(an + bn)Xn and f ⋆ g :=
∞∑

n=0

cnX
n,

where cn =
∑n

i=0

[
n
i

]
q

aibn−i. With these operations, we can show that Gq(R) is a

commutative ring with identity. The proof is routine; so we omit it.
Since the Gaussian binomial coefficient is the q-analogue of the binomial coef-

ficient, the concept of Gaussian series rings may be regarded as the q-analogue of
that of Hurwitz series rings.

Definition 2.1. Let R be a commutative ring with identity and q a prime power.
Then (Gq(R),+, ⋆) is called the Gaussian series ring over R with respect to q and
an element of Gq(R) is said to be a Gaussian series.

Our first result gives a relation between the Gaussian series ring and the formal
power series ring.

Proposition 2.2. Let R be a commutative ring with identity and q a prime power.
Then a map φ : R[[X]] → Gq(R) defined by φ

(∑∞
n=0 anX

n
)
=
∑∞

n=0[n]q!anX
n is a

ring homomorphism. In particular, φ is an isomorphism if and only if 1
[n]q !

∈ R for

all n ∈ N0.
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Proof. Let
∑∞

n=0 anX
n,
∑∞

n=0 bnX
n ∈ R[[X]]. Then we obtain

φ

( ∞∑
n=0

anX
n +

∞∑
n=0

bnX
n

)
= φ

( ∞∑
n=0

(an + bn)Xn

)

=
∞∑

n=0

[n]q!(an + bn)Xn

=
∞∑

n=0

[n]q!anX
n +

∞∑
n=0

[n]q!bnX
n

= φ

( ∞∑
n=0

anX
n

)
+ φ

( ∞∑
n=0

bnX
n

)
.

Also, we have

φ

(( ∞∑
n=0

anX
n

)( ∞∑
n=0

bnX
n

))
= φ

 ∞∑
n=0

( ∑
i+j=n

aibj

)
Xn


=

∞∑
n=0

(
[n]q!

∑
i+j=n

aibj

)
Xn

and

φ

( ∞∑
n=0

anX
n

)
⋆ φ

( ∞∑
n=0

bnX
n

)
=

( ∞∑
n=0

[n]q!anX
n

)
⋆

( ∞∑
n=0

[n]q!bnX
n

)

=
∞∑

n=0

( ∑
i+j=n

[
n
i

]
q

[i]q![j]q!aibj

)
Xn

=
∞∑

n=0

(
[n]q!

∑
i+j=n

aibj

)
Xn;

so φ
((∑∞

n=0 anX
n
)(∑∞

n=0 bnX
n
))

= φ
(∑∞

n=0 anX
n
)
⋆ φ
(∑∞

n=0 bnX
n
)

. Thus

φ is a ring homomorphism.
To show the second statement, we first suppose that φ is an isomorphism. Then

for any n ∈ N0, there exists an element 1
[n]q !

Xn ∈ R[[X]] such that φ
(

1
[n]q!

Xn
)

=

Xn. Thus 1
[n]q !

∈ R. For the converse, we suppose that 1
[n]q !

∈ R for all n ∈ N0.

If φ
(∑∞

n=0 anX
n
)

= 0, then
∑∞

n=0[n]q!anX
n = 0; so [n]q!an = 0 for all n ∈ N0.

Since 1
[n]q !

∈ R for all n ∈ N0, an = 0 for all n ∈ N0. Hence
∑∞

n=0 anX
n = 0, which

shows that φ is one-to-one. Let
∑∞

n=0 bnX
n ∈ Gq(R). Then by the assumption,
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we can find an element
∑∞

n=0
1

[n]q !
bnX

n ∈ R[[X]] such that φ
(∑∞

n=0
1

[n]q !
bnX

n
)

=∑∞
n=0 bnX

n. Hence φ is onto. Thus φ is an isomorphism.

Let R be a commutative ring with identity, Z the ring of integers, and q a prime
power. Then R may be viewed as a Z-module in the usual sense. Recall that R
is torsion-free if whenever na = 0 for n ∈ Z and a ∈ R, n = 0 or a = 0. As the
q-analogue of ‘torsion-free’, we define the concept of ‘q-torsion-free. We say that R

is q-torsion-free if whenever

[
n
r

]
q

a = 0 for a ∈ R and n, r ∈ N0 with n ≥ r, a = 0.

Clearly, if R is torsion-free, then R is q-torsion-free. The following examples show
that R being q-torsion-free does not imply that R is torsion-free.

Example 2.3. Let q be a prime power.

(1) Note that for all n, r ∈ N0 with n ≥ r,

[
n
k

]
q

≡ 1 (mod q). Hence Zq is

q-torsion-free but not torsion-free.

(2) If k = 0 or k = n, then

[
n
k

]
q

= 1; so we assume that n ≥ 2 and k ∈

{1, . . . , n − 1}. Then

[
n
k

]
q

≡ q + 1 (mod q2). Now, it is easy to check that if

(q + 1)a ≡ 0 (mod q2) for a ∈ Zq2 , then a ≡ 0 (mod q2). Hence Zq2 is q-torsion-free
but not torsion-free.

The next result characterizes when the Gaussian series ring is an integral do-
main.

Proposition 2.4. Let R be a commutative ring with identity and q a prime power.
Then the following conditions are equivalent.

(1) R is a q-torsion-free integral domain.

(2) Gq(R) is an integral domain.

Proof. (1) ⇒ (2) Suppose that f =
∑∞

n=0 anX
n, g =

∑∞
n=0 bnX

n are nonzero
elements of Gq(R) such that f ⋆ g = 0, and let m1,m2 be the smallest nonnegative
integers such that am1 ̸= 0 and bm2 ̸= 0. Then by comparing the coefficients of
Xm1+m2 in f ⋆ g = 0, we have[

m1 + m2

m1

]
q

am1bm2 = 0.

Since R is q-torsion-free, am1
bm2

= 0. Since R is an integral domain, am1
= 0 or

bm2 = 0, a contradiction. Thus Gq(R) is an integral domain.
(2) ⇒ (1) Let a, b ∈ R such that ab = 0. Then a, b ∈ Gq(R) such that a ⋆ b = 0.

Since Gq(R) is an integral domain, a = 0 or b = 0. Thus R is an integral domain.

Suppose that

[
n
r

]
q

a = 0 for a ∈ R and n, r ∈ N0 with n ≥ r. Then aXr ⋆ Xn−r =
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[
n
r

]
q

aXn = 0. Since Gq(R) is an integral domain and Xn−r ̸= 0, aXr = 0; so

a = 0. Thus R is q-torsion-free.

Let R be a commutative ring with identity. Then Idem(R) denotes the set of
idempotent elements of R.

Proposition 2.5. Let R be a commutative ring with identity and q a prime power.
Then Idem(Gq(R)) = Idem(R).

Proof. Clearly, Idem(R) ⊆ Idem(Gq(R)). For the reverse containment, let f =∑∞
i=0 aiX

i ∈ Idem(Gq(R)). We first claim that a0an = 0 for all n ∈ N. Since

a20 = a0 and 2a0a1 = a1, 2a0a1 = a0a1; so a0a1 = 0. Suppose that a0a1 = · · · =
a0am = 0 for some positive integer m. Then by comparing the coefficients of Xm+1

in f ⋆ f = f , we obtain ∑m+1
i=0

[
m + 1

i

]
q

aiam+1−i = am+1.

By multiplying a0 in both sides, 2a20am+1 = a0am+1. Since a20 = a0, a0am+1 = 0.
Hence by the induction, a0an = 0 for all n ∈ N.

We next show that f ∈ R. Suppose to the contrary that f ̸∈ R. Let k be the
smallest positive integer such that ak ̸= 0, and set g =

∑∞
i=k aiX

i. Then f = a0 +g
and a0 ⋆ g = 0. Since f ⋆ f = f and a20 = a0, g ⋆ g = g. Hence by comparing the
coefficients of Xk in g⋆g = g, ak = 0. This contradicts the choice of k. Thus f ∈ R,
which means that f ∈ Idem(R).

The final result in this section gives an equivalent condition for a Gaussian series
to be a unit.

Proposition 2.6. Let R be a commutative ring with identity and q a prime power.
Then

∑∞
n=0 anX

n is a unit in Gq(R) if and only if a0 is a unit in R.

Proof. (⇒) Suppose that
∑∞

n=0 anX
n is a unit in Gq(R). Then there exists an

element
∑∞

n=0 bnX
n ∈ Gq(R) such that

(∑∞
n=0 anX

n
)
⋆
(∑∞

n=0 bnX
n
)

= 1; so

a0b0 = 1. Thus a0 is a unit in R.
(⇐) To show that

∑∞
n=0 anX

n is a unit in Gq(R), we construct a suitable

element
∑∞

n=0 bnX
n ∈ Gq(R) such that

(∑∞
n=0 anX

n
)
⋆
(∑∞

n=0 bnX
n
)

= 1. Since

a0 is a unit in R, we can find an element b0 ∈ R such that a0b0 = 1. For each n ∈ N,
set

bn =

−
∑n

i=1

[
n
i

]
q

aibn−i

a0
.

Then it is easy to check that
(∑∞

n=0 anX
n
)
⋆
(∑∞

n=0 bnX
n
)

= 1. Thus
∑∞

n=0 anX
n

is a unit in Gq(R).
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3. McCoy’s Theorem

Let R be a commutative ring with identity and q a prime power. Then McCoy’s
theorem for Gq(R) holds if for any zero-divisor f ∈ Gq(R), there exists a nonzero
element a ∈ R such that a ⋆ f = 0. In this section, we study McCoy’s theorem for
Gq(R).

Proposition 3.1. Let R be a commutative ring with identity, q a prime power,
and let f, g be nonzero elements of Gq(R) such that f ⋆ g = 0. If R is q-torsion-free
and the ideal of R generated by the first nonzero coefficient of g contains a nonzero
idempotent element c, then c ⋆ f = 0.

Proof. Write f =
∑∞

i=0 aiX
i and g =

∑∞
i=m biX

i with bm ̸= 0, and let c ∈ (bm)
be a nonzero idempotent element. Then c = rbm for some r ∈ R. Since f ⋆ g = 0,
f ⋆ (r ⋆ g) = 0; so ca0 = 0. Suppose that ca0 = · · · = can = 0 for some nonnegative
integer n. By comparing the coefficients of Xm+n+1 in f ⋆ (r ⋆ g) = 0, we obtain[

m + n + 1
0

]
q

a0(rbm+n+1) + · · · +

[
m + n + 1

n + 1

]
q

an+1c = 0.

By multiplying c in both sides, we have[
m + n + 1

n + 1

]
q

an+1c
2 = 0.

Since R is q-torsion-free and c is idempotent, can+1 = 0. Hence by the induction,
cak = 0 for all k ∈ N0. Thus c ⋆ f = 0.

Theorem 3.2. Let R be a commutative ring with identity and q a prime power. If
McCoy’s theorem for Gq(R) holds, then R is q-torsion-free.

Proof. Suppose to the contrary that there exist a nonzero element a ∈ R and

nonnegative integers n > k such that

[
n
k

]
q

a = 0. Then Xn−k ⋆ aXk =

[
n
k

]
q

aXn =

0; so Xn−k is a zero-divisor of Gq(R). Note that b ∗Xn−k ̸= 0 for all b ∈ R \ {0}.
This contradicts the assumption that McCoy’s theorem for Gq(R) holds. Thus R
is q-torsion-free.

Corollary 3.3. Let R be a commutative ring with identity and q a prime power. If

char(R) =

[
n
k

]
q

for some positive integers n > k, then McCoy’s theorem for Gq(R)

does not hold.

Proof. Note that for any nonzero element a ∈ R,

[
n
k

]
q

a = 0; so R is not q-torsion-

free. Thus by Theorem 3.2, McCoy’s theorem for Gq(R) does not hold.
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Let R be a commutative ring with identity. Then R is said to be reduced if it
has no nonzero nilpotent elements. The next result shows that if R is reduced, then
the converse of Theorem 3.2 holds.

Theorem 3.4. Let R be a commutative ring with identity, q a prime power, and let
f =

∑∞
i=0 aiX

i, g =
∑∞

i=0 biX
i ∈ Gq(R). If R is reduced and q-torsion-free, then

f ⋆ g = 0 if and only if aibj = 0 for all i, j ∈ N0.

Proof. The “if” part is obvious. To show the converse, we suppose that f ⋆ g = 0.
Then a0b0 = 0. We first claim that anb0 = 0 for all n ∈ N0. Suppose that
a0b0 = · · · = amb0 = 0 for some nonnegative integer m. Then by calculating the
coefficients of Xm+1 in f ⋆ g = 0, we obtain

m+1∑
i=0

[
m + 1

i

]
q

aibm+1−i = 0.

By multiplying b0 in both sides, am+1b
2
0 = 0; so (am+1b0)2 = 0. Since R is reduced,

am+1b0 = 0. Hence by the induction, anb0 = 0 for all n ∈ N0.
We next prove that aibj = 0 for all i, j ∈ N0. Suppose that anb0 = anb1 =

· · · = anbm = 0 for all n ∈ N0 and some nonnegative integer m. If bm+1 = 0, then
anbm+1 = 0 for all n ∈ N0; so we assume that bm+1 ̸= 0. Then we obtain

0 = f ⋆ g

=

( ∞∑
i=0

aiX
i

)
⋆

( ∞∑
i=m+1

biX
i

)
;

so a0bm+1 = 0. If a0bm+1 = · · · = akbm+1 = 0 for some nonnegative integer k, then
a similar argument as in the proof of the previous claim shows that ak+1bm+1 = 0.
Hence by the induction, anbm+1 = 0 for all n ∈ N0. Thus by applying the induction
again, aibj = 0 for all i, j ∈ N0.

Let R be a commutative ring with identity and let a ∈ R. Then annR(a) denotes
the annihilator of a, i.e., annR(a) := {r ∈ R | ra = 0}. Also, if I is an ideal of R,
then Gq(I) := {

∑∞
n=0 anX

n | an ∈ I for all n ∈ N0} is an ideal of Gq(R).

Corollary 3.5. Let R be a commutative ring with identity, q a prime power, and
let f =

∑∞
i=0 aiX

i ∈ Gq(R). If R is reduced and q-torsion-free, then the following
assertions hold.

(1) annGq(R)(f) = Gq

(∩∞
i=0 annR(ai)

)
.

(2) f is a regular element of Gq(R) if and only if
∩∞

i=0 annR(ai) = (0).

Proof. (1) If g =
∑∞

i=0 biX
i ∈ annGq(R)(f), then f ⋆ g = 0. By Theorem

3.4, aibj = 0 for all i, j ∈ N0; so bj ∈
∩∞

i=0 annR(ai) for all j ∈ N0. Thus
g ∈ Gq

(∩∞
i=0 annR(ai)

)
. To show the reverse inclusion, let h =

∑∞
i=0 ciX

i ∈
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Gq

(∩∞
i=0 annR(ai)

)
. Then aicj = 0 for all i, j ∈ N0. Thus by Theorem 3.4, f ⋆h = 0,

which means that h ∈ annGq(R)(f).
(2) If b ∈

∩∞
i=0 annR(ai), then b ⋆ f = 0 by (1). Since f is a regular element

of Gq(R), b = 0. Thus
∩∞

i=0 annR(ai) = (0). Conversely, if g =
∑∞

i=0 biX
i is an

element of Gq(R) with f ⋆ g = 0, then by (1), bj ∈
∩∞

i=0 annR(ai) for all j ∈ N0.
Since

∩∞
i=0 annR(ai) = (0), bj = 0 for all j ∈ N0. Hence g = 0, and thus f is a

regular element of Gq(R).

Let R be a commutative ring with identity. Then Nil(R) denotes the set of
nilpotent elements of R, and Z(R) means the set of zero-divisors of R. Also, a
prime ideal of R is said to be divided if it is comparable to any principal ideal of R.
We are closing this section by considering the case when R is not reduced.

Theorem 3.6. Let R be a commutative ring with identity and q a prime power. If
R is not reduced and Nil(R) is a divided prime ideal of R which is different from
Z(R), then any element of Gq(R) with constant term in Z(R)\Nil(R) is annihilated
by a nonzero element of Gq(Nil(R)).

Proof. Let f =
∑∞

n=0 anX
n ∈ Gq(R) with a0 ∈ Z(R) \ Nil(R). We now construct

a nonzero element g =
∑∞

n=0 bnX
n ∈ Gq(Nil(R)) such that f ⋆ g = 0. Since a0

is a zero-divisor of R, there exists a nonzero element b0 ∈ R such that a0b0 = 0.
Since Nil(R) is a prime ideal of R and a0 ̸∈ Nil(R), b0 ∈ Nil(R). Also, since
Nil(R) is divided and a0 ̸∈ Nil(R), Nil(R) ( (a0). Note that −a1b0 ∈ Nil(R); so
−a1b0 = a0b1 for some b1 ∈ R. Since Nil(R) is a prime ideal of R and a0 ̸∈ Nil(R),
b1 ∈ Nil(R). Suppose that b0, . . . , bn ∈ Nil(R) for some nonnegative integer n.

Then −

([
n + 1

1

]
q

a1bn + · · · +

[
n + 1
n + 1

]
q

an+1b0

)
∈ Nil(R). Since Nil(R) ( (a0),

we obtain

−

([
n + 1

1

]
q

a1bn + · · · +

[
n + 1
n + 1

]
q

an+1b0

)
= a0bn+1

for some bn+1 ∈ R. Since Nil(R) is a prime ideal of R and a0 ̸∈ Nil(R), bn+1 ∈
Nil(R). By the induction, we obtain an infinite sequence (bn)n≥0 in Nil(R) such that[
n
0

]
q

a0bn + · · · +

[
n
n

]
q

anb0 = 0 for all n ∈ N0. Thus by setting g =
∑∞

n=0 bnX
n ∈

Gq(Nil(R)), we deduce that f ⋆ g = 0.

4. Hermite Rings

Let R be a commutative ring with identity. Recall from [4, page 465] that R is
a right K-Hermite ring if for any a, b ∈ R, there exist an element r ∈ R and a 2× 2
invertible matrix M over R such that

(
a b

)
M =

(
r 0

)
.

Theorem 4.1. Let R be a commutative ring with identity and q a prime power. If
Gq(R) is a right K-Hermite ring, then R is a right K-Hermite ring.
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Proof. Let a, b ∈ R. Then a, b ∈ Gq(R). Since Gq(R) is a right K-Hermite ring, we

can find an element f ∈ Gq(R) and an invertible matrix

(
g11 g12
g21 g22

)
over Gq(R)

such that
(
a b

)(g11 g12
g21 g22

)
=
(
f 0

)
; so

(
a b

)(g11(0) g12(0)
g21(0) g22(0)

)
=
(
f(0) 0

)
.

Note that the determinant of

(
g11(0) g12(0)
g21(0) g22(0)

)
is the constant term of the deter-

minant of

(
g11 g12
g21 g22

)
; so by Proposition 2.6, the determinant of

(
g11(0) g12(0)
g21(0) g22(0)

)
is a unit in R. Hence

(
g11(0) g12(0)
g21(0) g22(0)

)
is an invertible matrix over R. Thus R is a

right K-Hermite ring.

The next example shows that the Gaussian series ring over a right K-Hermite
ring need not be a right K-Hermite ring.

Example 4.2. Let Z be the ring of integers.

(1) Let a, b ∈ Z. If b = 0, then
(
a b

)(1 0
0 1

)
=
(
a 0

)
. Suppose that b ̸= 0.

If a = 0, then
(
a b

)(0 1
1 0

)
=
(
b 0

)
; so we assume that a ̸= 0. Let d be the

greatest common divisor of a and b. Then a = da′ and b = db′ for some a′, b′ ∈ Z.
Since a′ and b′ are relative prime, there exist α, β ∈ Z such that a′α + b′β = 1;

so
(
a′ b′

)(α −b′

β a′

)
=
(
1 0

)
. Hence

(
a b

)(α −b′

β a′

)
=
(
d 0

)
. Note that(

α −b′

β a′

)
is invertible. Thus Z is a K-Hermite ring.

(2) Let q be any prime power, and let f = 2+X +X2 + · · · , g = X +X2 + · · · ∈
Gq(Z). If Gq(Z) is a K-Hermite ring, then there exist an element h ∈ Gq(Z) and an

invertible matrix

(
h11 h12

h21 h22

)
over Gq(Z) such that

(
f g

)(h11 h12

h21 h22

)
=
(
h 0

)
;

so f ⋆ h12 + g ⋆ h22 = 0. Write h12 =
∑∞

n=0 cnX
n and h22 =

∑∞
n=0 dnX

n. Then we
obtain

0 = f ⋆ h12 + g ⋆ h22

= 2c0 + (c0 + 2c1 + d0)X + · · · ;

so c0 = 0 and d0 is a multiple of 2. Hence the constant term of the determinant

of

(
h11 h12

h21 h22

)
cannot be ±1, which means that

(
h11 h12

h21 h22

)
is not invertible by

Proposition 2.6. This is absurd. Thus Gq(Z) is not a K-Hermite ring.

Let R be a commutative ring with identity. Recall that R is an L-Hermite ring
if for any (a1, . . . , am) ∈ Rm with a1R + · · · + amR = R, there exists an m × m
invertible matrix over R with the first row vector (a1, . . . , am).
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Theorem 4.3. Let R be a commutative ring with identity and q a prime power.
Then the following statements are equivalent.

(1) R is an L-Hermite ring.

(2) Gq(R) is an L-Hermite ring.

Proof. (1) ⇒ (2) Let (f1, . . . , fm) ∈ Gq(R)
m

be such that f1 ⋆ Gq(R) + · · · + fm ⋆
Gq(R) = Gq(R). Then we can find an element (g1, . . . , gm) ∈ Gq(R)

m
such that f1⋆

g1+· · ·+fm⋆gm = 1; so f1(0)g1(0)+· · ·+fm(0)gm(0) = 1. Therefore f1(0)R+· · ·+
fm(0)R = R. Since R is an L-Hermite ring, there exists an m×m invertible matrix

P =


f1(0) f2(0) · · · fm(0)
r21 r22 · · · r2m
...

...
. . .

...
rm1 rm2 · · · rmm

 over R. Let Q =


f1 f2 · · · fm
r21 r22 · · · r2m
...

...
. . .

...
rm1 rm2 · · · rmm

.

Then Q is an m × m matrix over Gq(R). Note that the constant term of the
determinant of Q is precisely the same as the determinant of P ; so by Proposition
2.6, the determinant of Q is a unit in Gq(R). Hence Q is invertible. Thus Gq(R) is
an L-Hermite ring.

(2) ⇒ (1) Let (a1, . . . , am) ∈ Rm be such that a1R + · · · + amR = R. Then
a1 ⋆ Gq(R) + · · · + am ⋆ Gq(R) = Gq(R). Since Gq(R) is an L-Hermite ring, there

exists an m×m invertible matrix M =


a1 a2 · · · am
f21 f22 · · · f2m
...

...
. . .

...
fm1 fm2 · · · fmm

 over Gq(R). Let

N =


a1 a2 · · · am

f21(0) f22(0) · · · f2m(0)
...

...
. . .

...
fm1(0) fm2(0) · · · fmm(0)

. Since the determinant of M is a unit in

Gq(R), Proposition 2.6 shows that the determinant of N is a unit in R. Hence N
is an m×m invertible matrix over R. Thus R is an L-Hermite ring.

Let R be a commutative ring with identity and M a unitary R-module. Then
M is free if M has a basis; and M is stably free if there exist positive integers m
and n such that M ⊕Rm = Rn. Clearly, free modules are stably free.

Corollary 4.4. Let R be a commutative ring with identity and q a prime power.
Then the following assertions are equivalent.

(1) Every stably free R-module is free.

(2) Every stably free Gq(R)-module is free.

Proof. Note that if T is a commutative ring with identity, then T is an L-Hermite
ring if and only if every stably free T -module is free [7, Chapter I, Corollary 4.5].
Thus the equivalence follows from Theorem 4.3.
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Remark 4.5. Note that by Theorem 4.3, the Gaussian series ring over an L-Hermite
ring is L-Hermite; so Example 4.2 indicates that the notion of L-Hermite rings is
different from that of right K-Hermite rings.

5. Noetherian Properties

Let R be a commutative ring with identity and q a prime power. Recall that
R is a Noetherian ring if every ideal of R is finitely generated (or equivalently, R
satisfies the ascending chain condition on integral ideals). In this section, we study
the Noetherian properties in Gq(R).

Lemma 5.1. Let R be a commutative ring with identity, q a prime power, and I
an ideal of R. Then Gq(I) = I ⋆Gq(R) if and only if for any countable subset C of
I, there exists a finitely generated ideal F of R such that C ⊆ F ⊆ I.

Proof. (⇒) Let C = {ci | i ∈ N0} be a countable subset of I, and let f =∑∞
i=0 ciX

i ∈ Gq(I). Since Gq(I) = I ⋆ Gq(R), we can find b1, . . . , bn ∈ I and
g1, . . . , gn ∈ Gq(R) such that f = b1 ⋆ g1 + · · ·+ bn ⋆ gn. Let F = (b1, . . . , bn). Then
F is a finitely generated ideal of R such that C ⊆ F ⊆ I.

(⇐) Clearly, I ⋆ Gq(R) ⊆ Gq(I), because I ⊆ Gq(I). For the reverse contain-
ment, let f =

∑∞
i=0 aiX

i ∈ Gq(I). Then there exist suitable elements b1, . . . , bn ∈ I
such that {ai | i ∈ N0} ⊆ (b1, . . . , bn); so for each i ∈ N0, ai =

∑n
j=1 bjcij for some

cij ∈ R. Hence we obtain

f =

∞∑
i=0

(
n∑

j=1

bjcij

)
Xi =

n∑
j=1

(
bj ⋆

∞∑
i=0

cijX
i

)
∈ I ⋆ Gq(R).

Thus Gq(I) = I ⋆ Gq(R).

As an immediate consequence of Lemma 5.1, we obtain

Proposition 5.2. Let R be a commutative ring with identity and q a prime power.
If I is a finitely generated ideal of R, then Gq(I) = I ⋆ Gq(R).

Theorem 5.3. Let R be a commutative ring with identity and q a prime power.
Then the following statements are equivalent.

(1) R is a Noetherian ring.

(2) For each ideal I of R, Gq(I) = I ⋆ Gq(R).

Proof. (1) ⇒ (2) This implication follows from Proposition 5.2, because every ideal
of a Noetherian ring is finitely generated.

(2) ⇒ (1) Suppose to the contrary that R is not a Noetherian ring. Then there
exists a strictly ascending chain of ideals (In)n≥0 of R; so for each n ≥ 1, we can
choose an element an ∈ In \ In−1. Let I =

∪∞
n=0 In. Then I is an ideal of R. Since

Gq(I) = I ⋆Gq(R), Lemma 5.1 indicates that there exists a finitely generated ideal
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F of R such that {an |n ∈ N} ⊆ F ⊆ I. Since F is finitely generated, F ⊆ Ik for
some positive integer k. Hence ak+1 ∈ Ik, which is a contradiction. Thus R is a
Noetherian ring.

Let R be a commutative ring with identity and I an ideal of R. Then
√
I

denotes the radical of I. We end this article with the radical property of Gaussian
series rings.

Proposition 5.4. Let R be a commutative ring with identity and q a prime power.
If I and J are ideals of R with Gq(J) = J ⋆Gq(R) and J ⊆

√
I, then there exists a

positive integer n such that Jn ⊆ I.

Proof. Deny the conclusion. Then for each m ≥ 1, there exist bm1, . . . , bmm ∈
J such that bm1 · · · bmm ̸∈ I. Let C be the ideal of R generated by {bmi |m ∈
N and 1 ≤ i ≤ m}. Then C is a countably generated subideal of J such that
Cm ̸⊆ I for all m ∈ N. Since Gq(J) = J ⋆ Gq(R), by Lemma 5.1, there exists a
finitely generated ideal F of R such that C ⊆ F ⊆ J . Since F is finitely generated
and J ⊆

√
I, F k ⊆ I for some k ∈ N. Hence Ck ⊆ I, which is absurd. Thus Jn ⊆ I

for some n ≥ 1.
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