• Title/Summary/Keyword: Nodal integration

Search Result 47, Processing Time 0.03 seconds

Analysis of Steady Vortex Rings Using Contour Dynamics Method for the Stream Function

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, the Norbury-Fraenkel family of vortex rings is analyzed using a contour dynamics method for the stream function, which significantly reduces the numerical burden in the calculation. The stream function is formulated as the integral along the contour of the vorticity core. The integration over the logarithmic-singular segment is evaluated analytically, and the positions of the nodal points of the contour are calculated directly. The shapes of the cores and the dividing stream surfaces are found based on the mean core radius. Compared with other studies, the proposed method is verified and found to be more efficient.

Development of Stamping Process Optimization System through the Integration of Blank Design and Nesting (블랭크 설계와 배치의 일체화를 통한 스탬핑 공정 최적화 시스템의 개발)

  • 심현보;박종규
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.615-622
    • /
    • 2003
  • In the automobile industry, the design of optimal blank shape becomes a significant part of the stamping. It provides many evident advantages, sush as enhancement of formability, reduction of material cost and product development period. However, the nesting process, required for the optimal usage of materials in the blanking becomes more complicated as the blank shape becomes complicated, like most optimal blank shape. In this study, stamping process optimization system for the optimal usage of material has been developed through the integration of optimal blank design and optimal nesting. For optimal blank design, a radius vector method, the modified version of the initial nodal velocity method, the past work of the present author, have been proposed. Both the optimal blank design and optimal nesting programs have been developed under the GUI environment for the convenience of engineers. The efficiency of the optimization system has been verified with some chosen problems.

A new method of predicting hotspot stresses for longitudinal attachments with reduced element sensitivities

  • Li, Chun Bao;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.379-395
    • /
    • 2021
  • For the complicated structural details in ships and offshore structures, the traditional hotspot stress approaches are known to be sensitive to the element variables of element topologies, sizes, and integration schemes. This motivated to develop a new approach for predicting reasonable hotspot stresses, which is less sensitive to the element variables and easy to be implemented the real marine structures. The three-point bending tests were conducted for the longitudinal attachments with the round and rectangular weld toes. The tests were reproduced in the numerical simulations using the solid and shell element models, and the simulation technique was validated by comparing the experimental stresses with the simulated ones. This paper considered three hotspot stress approaches: the ESM method based on surface stress extrapolation, the Dong's method based on nodal forces along a weld toe, and the proposed method based on nodal forces perpendicular to an imaginary vertical plane at a weld toe. In order to study the element sensitivities of each method, 16 solid element models and 8 shell element models were generated under the bending and tension loads, respectively. The element sensitivity was analyzed in terms of Stress Concentration Factors (SCFs) in viewpoints of two statistical quantities of mean and bias with respect to the reference SCFs. The average SCFs predicted by the proposed method were remarkably in good agreement with the reference SCFs based on the experiments and the ship rules. Negligibly small Coefficients of Variation (CVs) of the SCFs, which is measure of statistical bias, were drawn by the proposed method.

Iterative coupling of precise integration FEM and TD-BEM for elastodynamic analysis

  • Lei, Weidong;Liu, Chun;Qin, Xiaofei;Chen, Rui
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.317-326
    • /
    • 2018
  • The iterative decomposition coupling formulation of the precise integration finite element method (FEM) and the time domain boundary element method (TD-BEM) is presented for elstodynamic problems. In the formulation, the FEM node and the BEM node are not required to be coincident on the common interface between FEM and BEM sub-domains, therefore, the FEM and BEM are independently discretized. The force and displacement converting matrices are used to transfer data between FEM and BEM nodes on the common interface between the FEM and BEM sub-domains, to renew the nodal variables in the process of the iterations for the un-coincident FEM node and BEM node. The iterative coupling formulation for elastodynamics in current paper is of high modeling accuracy, due to the semi-analytical solution incorporated in the precise integration finite element method. The decomposition coupling formulation for elastodynamics is verified by examples of a cantilever bar under a Heaviside-type force and a harmonic load.

A Study on Integraion Method for Improvement of Numerical Stability of Meshfree Method (무요소법의 수치적 안정성 개선을 위한 적분기법 연구)

  • Kang, JaeWon;Kang, Da Hoon;Cho, Jin Yeon;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.210-218
    • /
    • 2018
  • In order to generate meshes automatically for finite element analysis of complex structures such as aircraft, a large number of triangular elements are typically created. However, triangular elements are less accurate than rectangular elements, so it is difficult to obtain a reliable solution. This problem can be improved through the meshfree method using the back cell integration. However, this method also causes some problems such as over-use of the integration points and inefficiency of the integral domain. In order to improve these problems, a method of performing integration by setting the integral area based on a node basis has been proposed, but in the case of incompressible material problems, the numerical accuracy deteriorates due to the vibration phenomenon of the solution. Therefore, in this paper, the modified meshfree method is proposed which sets the integral domain as an element domain instead of the nodal domain, and the proposed method improves the numerical instability caused by the conventional meshfree method without decreasing the accuracy regardles of the shape of integral domain. The effectiveness of the modified meshfree method is verified by using 2-D examples.

Nonlinear Analysis of Underwater Towed Cable Using Robust Nodal Position Finite Element Method (강건 절점위치 유한요소법을 이용한 수중 예인 케이블의 비선형 거동해석)

  • Lee, Euntaek;Go, Gwangsoo;Ahn, Hyung Taek;Kim, Seongil;Chun, Seung Yong;Kim, Jung Suk;Lee, Byeong Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.388-399
    • /
    • 2016
  • A motion analysis of an underwater towed cable is a complex task due to its nonlinear nature of the problem. The major source of the nonlinearity of the underwater cable analysis is that the motion of the cable involves large rigid-body motion. This large rigid-body motion makes difficult to use standard displacement-based finite element method. In this paper, the authors apply recently developed nodal position-based finite element method which can deal with the geometric nonlinearity due to the large rigid-body motion. In order to enhance the stability of the large-scale nonlinear cable motion simulation, an efficient time-integration scheme is proposed, namely predictor/multi-corrector Newmark scheme. Three different predictors are introduced, and the best predictor in terms of stability and robustness for impulsive cable motion analysis is proposed. As a result, the nonlinear motion of underwater cable is predicted in a very efficient manner compared to the classical finite element of finite difference methods. The efficacy of the method is demonstrated with several test cases, involving static and dynamic motion of a single cable element, and also under water towed cable composed of multiple cable elements.

From proteomics toward systems biology: integration of different types of proteomics data into network models

  • Rho, Sang-Chul;You, Sung-Yong;Kim, Yong-Soo;Hwang, Dae-Hee
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.184-193
    • /
    • 2008
  • Living organisms are comprised of various systems at different levels, i.e., organs, tissues, and cells. Each system carries out its diverse functions in response to environmental and genetic perturbations, by utilizing biological networks, in which nodal components, such as, DNA, mRNAs, proteins, and metabolites, closely interact with each other. Systems biology investigates such systems by producing comprehensive global data that represent different levels of biological information, i.e., at the DNA, mRNA, protein, or metabolite levels, and by integrating this data into network models that generate coherent hypotheses for given biological situations. This review presents a systems biology framework, called the 'Integrative Proteomics Data Analysis Pipeline' (IPDAP), which generates mechanistic hypotheses from network models reconstructed by integrating diverse types of proteomic data generated by mass spectrometry-based proteomic analyses. The devised framework includes a serial set of computational and network analysis tools. Here, we demonstrate its functionalities by applying these tools to several conceptual examples.

Nonlinear Dynamic Analysis using Petrov-Galerkin Natural Element Method (페트로프-갤러킨 자연요소법을 이용한 비선형 동해석)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.474-479
    • /
    • 2004
  • According to our previous study, it is confirmed that the Petrov-Galerkin natural element method (PGNEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method (BG-NEM). This paper is an extension of PG-NEM to two-dimensional nonlinear dynamic problem. For the analysis, a constant average acceleration method and a linearized total Lagrangian formulation is introduced with the PG-NEM. At every time step, the grid points are updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates the nonlinear dynamic problem.

  • PDF

Elasto-plastic Finite Element Analysis of Hardening Materials Using Simplified Method (단순화법을 이용한 소성 경화재료에서의 탄.소성 구조물의 유한요소해석)

  • Kim, Byeong-Sam;Park, Kyoung-Woo;Sung, Ki-Suk;Yu, Geun-Yeal
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.596-601
    • /
    • 2007
  • A simplified finite element analysis method is proposed to calculate elasto-plastic responses of general hardening materials. The method provides an effective tool to calculate structural elasto-plastic responses. Numerical examples have demonstrated that its computational efficiency is very much higher than that of the incremental elasto-plastic finite element analysis, and computational results are accurate enough to meet the need of engineering practice. Compared with the general elasto-plastic incremental finite element analysis, the proposed method can avoid the incremental iteration of nodal displacements and the constitutive equation integration at each Gauss integral point, and computational results are accurate enough to meet the need of engineering practice.

  • PDF

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.