Browse > Article
http://dx.doi.org/10.26748/KSOE.2020.010

Analysis of Steady Vortex Rings Using Contour Dynamics Method for the Stream Function  

Choi, Yoon-Rak (School of Naval Architecture and Ocean Engineering, University of Ulsan)
Publication Information
Journal of Ocean Engineering and Technology / v.34, no.2, 2020 , pp. 89-96 More about this Journal
Abstract
In this study, the Norbury-Fraenkel family of vortex rings is analyzed using a contour dynamics method for the stream function, which significantly reduces the numerical burden in the calculation. The stream function is formulated as the integral along the contour of the vorticity core. The integration over the logarithmic-singular segment is evaluated analytically, and the positions of the nodal points of the contour are calculated directly. The shapes of the cores and the dividing stream surfaces are found based on the mean core radius. Compared with other studies, the proposed method is verified and found to be more efficient.
Keywords
Norbury-Fraenkel family of vortex rings; Contour dynamics method; Stream function; Integration over the logarithmic-singular segment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akhmetov, D.G. (2009). Vortex Rings. New York, USA: Springer.
2 Durst, F., Schönung, B., & Simons, M. (1981). Steady Ellipsoidal Vortex Rings with Finite Cores. Journal of Applied Mathematics and Physics, 32(2), 156-169. https://doi.org/10.1007/BF00946745
3 Fraenkel, L.E. (1970). On Steady Vortex Rings of Small Cross-Section in an Ideal Fluid. Proceedings of the Royal Society A, 316(1524), 29-62. https://doi.org/10.1098/rspa.1970.0065   DOI
4 Fraenkel, L.E. (1972). Examples of Steady Vortex Rings of Small Cross-Section in an Ideal Fluid. Journal of Fluid Mechanics, 51(1), 119-135. https://doi.org/10.1017/S0022112072001107   DOI
5 Gradshteyn, I.S., & Ryzhik, I.M. (2000). Table of Integrals, Series, and Products (6th ed.). San Diego, USA: Academic Press.
6 Helmholtz, H. (1867). On Integrals of the Hydrodynamical Equations, Which Express Vortex-Motion. Philosophical Magazine and Journal of Science (4th series), 33, 485-512. https://doi.org/10.1080/14786446708639824   DOI
7 Hill, M.J.M. (1894). On a Spherical Vortex. Philosophical Transactions of the Royal Society A, 185, 213-245. https://doi.org/10.1098/rsta.1894.0006   DOI
8 Krueger, P.S. & Gharib, M. (2005). Thrust Augmentation and Vortex Ring Evolution in a Fully Pulsed Jet. AIAA Journal, 43(4), 792-801. https://doi.org/10.2514/1.9978   DOI
9 Lamb, H. (1932). Hydrodynamics (6th ed.). Cambridge, UK: Cambridge University Press.
10 Lugt, H.J. (1983). Vortex Flow in Nature and Technology. New York, USA: John Wiley & Sons.
11 Norbury, J. (1973). A Family of Steady Vortex Rings. Journal of Fluid Mechanics, 57(3), 417-431. https://doi.org/10.1017/S0022112073001266   DOI
12 Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (1992). Numerical Recipes in Fortran 77 (2nd ed.). Cambridge, UK: Cambridge University Press.
13 Samimy, M., Breuer, K.S., Leal, L.G., & Steen, P.H. (2003). A Gallery of Fluid Motion. New York, USA: Cambridge University Press.
14 Shariff, K., Leonard, A., & Ferziger, J.H. (1989). Dynamics of a Class of Vortex Rings (NASA Technical Memorandum 102257). Moffett Field, USA: NASA.
15 Shariff, K., Leonard, A., & Ferziger, J.H. (2008). A Contour Dynamics Algorithm for Axisymmetric Flow. Journal of Computational Physics, 227(10), 9044-9062. https://doi.org/10.1016/j.jcp.2007.10.005   DOI
16 Van Dyke, M. (1982). An Album of Fluid Motion. Stanford, USA: Parabolic Press.
17 Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge, UK: Cambridge University Press.
18 Helmholtz, H. (1858). Uber Integrale der Hydrodynamischen Bleichungen, Welche den Wirbelbewegungen Entsprechen. Journal Fur die Reine und Angewandte Mathematik, 55, 25-55. https://doi.org/10.1515/crll.1858.55.25