Acknowledgement
This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Industrial Facilities & Infrastructure Research Program, funded by Korea Ministry of Environment(MOE)(146836). Authors appreciated Independent Innovation Foundation of Wuhan University of Technology (No. 3120621112) and Wuhan University of Technology Project (No. 612004951), China.
References
- ABAQUS, 2018. User's Manual vol. 2018.
- Belytschko, T., Ong, J.S.J., Liu, W.K., Kennedy, J.M., 1984. Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Math. 43 (3), 251-276.
- DNV, 2014. Fatigue assessment of ship structures, Classification notes No. 30.7 (Det Norske Veritas).
- DNV, 2015. Fatigue Assessment of Ship Structures, Class Guideline DNVGL-CG-0129 (Det Norske Veritas).
- DNV, 2015. Welding, rules for classification ships-3-13 (Det Norske Veritas).
- Doerk, O., Fricke, W., Weissenborn, C., 2003. Comparison of different calculation methods for structural stresses at welded joints. Int. J. Fatig. 25, 359-369. https://doi.org/10.1016/S0142-1123(02)00167-6
- Dong, P., Hong, J.K., Cao, Z., 2000. A mesh-insensitive structural stress procedure for fatigue evaluation of welded structures. IIW Document XII-1902-01XV-1089-01.
- Dong, P., 2001. A structural stress definition and numerical implementation for fatigue analyses. Int. J. Fatig. 23 (10), 865-876. https://doi.org/10.1016/S0142-1123(01)00055-X
- Dong, P., Hong, J.K., 2002. A structural stress based master S-N curve approach for welded joints. IIW Document XIII-1930-02XV-1119-02.
- Dong, P., 2005. A robust structural stress method for fatigue analysis of offshoremarine structures. J. Offshore Mech. Arctic Eng. 127 (1), 68-74. https://doi.org/10.1115/1.1854698
- Dong, P., Hong, J.K., De Jesus, A.M.P., 2007. Analysis of recent fatigue data using the structural stress procedure in ASME Div 2 rewrite. J. Press. Vess. Technol. ASME 129, 355-362. https://doi.org/10.1115/1.2748818
- Fricke, W., Sabel, A., 2000. Hotspot stress analysis of five structural details and recommendations for modelling, stress evaluation and design S-N curve. GL. Report No FF99.188.A. Rev 02.
- Fricke, W., 2002. Recommended hotspot analysis procedure for structural details of ships and FPSOs based on round-robin FE analyses. Int. J. Offshore Polar Eng. 12 (1), 40-47.
- Fricke, W., Kahl, A., 2005. Comparison of different structural stress approaches for fatigue assessment of welded ship structures. Mar. Struct. 18, 473-488. https://doi.org/10.1016/j.marstruc.2006.02.001
- Healy, B., 2004. A case study comparison of surface extrapolation and Battelle structural stress methodologies. In: In: Proceeding of the 23rd International Conference on Ocean, Offshore and Arctic Engineering, Vancouver, Canada.
- Hobbacher, A., 2009. Recommendations for Fatigue Design of Welded Joints and Components, vol. 520. WRC Bulletin, New York.
- Huther, I., Gorski, S., Lieurade, H.P., Laborde, S., Recho, N., 1999. Longitudinal non-loaded welded joints-geometrical stress approach. Weld. World 43 (3), 20-26.
- IACS, 2014. Common structural rules for bulk carriers and oil tankers. In: International Association of Classification Societies.
- Kang, H.T., Dong, P., Hong, J.K., 2007. Fatigue analysis of spot welds using a meshinsensitive structural stress approach. Int. J. Fatig. 29, 1546-1553. https://doi.org/10.1016/j.ijfatigue.2006.10.025
- Kim, C.S., Li, C.B., Choung, J., Kim, Y.H., 2017a. Prediction of crack growth of an aged coast guard patrol ship based on various approaches. In: Proceeding of the 6th International Conference on Marine Structures, Lisbon, Portugal.
- Kim, C.S., Li, C.B., Kim, Y.H., Choung, J., 2017b. Prediction of crack growth lives of an aged Korean coast guard patrol ship based on extended finite element method (XFEM) J-Integral. J. Soc. Nav. Archit. 54 (4), 335-343.
- Kim, S.M., Kim, M.H., Kang, S.W., Pyun, J.H., Kim, Y.N., Kim, S.G., Lee, K.E., Kim, G.R., 2008. A comparative study for the fatigue assessment of side shell longitudinal on 8100 TEU container carrier using hot spot stress and structural stress approaches. J. Soc. Nav. Archit. 45 (3), 296-302.
- Li, C.B., Choung, J., 2016. Fatigue damage analysis for a floating offshore wind turbine mooring line using the artificial neural network approach. Ships Offshore Struct. 12 (1), 288-295.
- Li, C.B., Choung, J., Noh, M.H., 2018. Wide-banded fatigue damage evaluation of Catenary mooring lines using artificial neural networks models. Mar. Struct. 60, 186-200. https://doi.org/10.1016/j.marstruc.2018.03.013
- Li, C.B., Choung, J., Kim, B.I., 2018. Prediction of stress spectra under low period sea states. Ships Offshore Struct. 13 (1), 56-67. https://doi.org/10.1080/17445302.2017.1342894
- Li, C.B., Kim, S.J., Lee, J.C., Paik, J.K., Sohn, J.M., 2014. Dynamic structural response characteristics of perforated blast walls under hydrocarbon explosion. In: Proceeding of the 7th International Conference on Thin-Walled Structures, Busan, Korea.
- Li, C.B., Seo, J.K., Paik, J.K., 2016. Proposed formulas for evaluation of the equivalent material properties of a multiholed structures. Ocean. Eng. 121 (15), 312-322. https://doi.org/10.1016/j.oceaneng.2016.05.038
- Lotsberg, I., 2010. Fatigue design of plated structures using finite element analysis. Ships Offshore Struct. 1 (1), 45-54. https://doi.org/10.1533/saos.2005.0006
- LR, 2015. Ship Right Design and Construction, Fatigue Design Assessment-Application and Notations. Lloyd's Register.
- Niemi, E., 1995. Recommendations Concerning Stress Determination for Fatigue Analysis of Welded Components. Abington Publ, Cambridge.
- Niemi, E., Tanskanen, P., 2000. Hotspot stress determination for welded edge gussets. Weld. World 44 (5), 31-37.
- Niemi, E., Fricke, W., Maddox, S.J., 2006. Fatigue Analysis of Welded Components-Designer's Guide to the Hot-Spot Stress Approach. Woodhead Publ, Cambridge.
- Petershagen, H., Fricke, W., Massel, T., 1991. Application of the local approach to the fatigue strength assessment of welded structures in ships. IIW Document XIII, 1409-1491.
- Poutiainen, I., Tanskanen, P., Marquis, G., 2004. Finite element methods for structural hotspot stress determination - a comparison of procedures. Int. J. Fatig. 26, 1147-1157. https://doi.org/10.1016/j.ijfatigue.2004.04.003
- Radaj, D., 1990. Design and Analysis of Fatigue-Resistant Welded Structures. Abington Pub, Cambridge.
- Remes, H., Fricke, W., 2014. Influencing factors on fatigue strength of welded thin plates based on structural stress assessment. Weld. World 58, 915-923. https://doi.org/10.1007/s40194-014-0170-7
- Xing, S., Dong, P., 2017. Fatigue of titanium weldments: S-N testing and analysis for data transferability among different joint types. Int. J. Fatig. 53, 1-19. https://doi.org/10.1016/j.ijfatigue.2013.05.002
- Xiao, Z.G., Yamada, K., 2004. A method of determining geometric stress for fatigue strength evaluation of steel welded joints. Int. J. Fatig. 26, 1277-1293. https://doi.org/10.1016/j.ijfatigue.2004.05.001
Cited by
- The Quasi-Static Response of Moored Floating Structures Based on Minimization of Mechanical Energy vol.9, pp.9, 2021, https://doi.org/10.3390/jmse9090960
- Effects of strain- and strain rate- dependent nonlinear mooring line stiffness on floating platform motion vol.241, 2021, https://doi.org/10.1016/j.oceaneng.2021.110011
- Ultimate strength characteristics of unstiffened cylindrical shell in axial compression vol.243, 2021, https://doi.org/10.1016/j.oceaneng.2021.110253