• Title/Summary/Keyword: Nitric

Search Result 4,804, Processing Time 0.025 seconds

Analysis of Chlorogenic Acid Content and Biological Activities of Aralia elata Ethanol Extract (두릅 에탄올 추출물의 Chlorogenic acid 함량 분석 및 생리활성)

  • Lee, Jeong Ho;Jeong, Kyoung Ok;Im, So Yeon;Jin, Da Mon;Lee, Wang Ro
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.574-585
    • /
    • 2022
  • This study was conducted to quantify chlorogenic acid content and evaluate biological activity, such as antioxidant, antibacterial, anti-inflammatory, and digestive enzyme activity of Aralia elata ethanol extract (AEE). The SC50 of DPPH and ABTS radical scavenging activities of AEE were 4.79±0.05 mg/mL, 5.79±0.05 mg/mL; total polyphenol and total flavonoid contents were 170.0±1.8 mgGAE/g, 105.5±4.1 mgQE/g, respectively. Nitric oxide (NO) was increased in RAW 264.7 cells and Caco-2 cells with treatment of LPS, and production of NO was inhibited by AEE in a concentration-dependent manner. Production of NO was reduced by 60.0±1.1% in RAW 264.7 cells and 50.7±2.8% in Caco-2 cells at of AEE. Similarly, the production of inflammatory cytokines (TNF-α, IL-1β and IL-6) was inhibited in a concentration dependent manner. Antibacterial activity increased as the dose concentration of AEE increased, and the MIC was 75 mg/mL for L. monocytogenes, and 100 mg/mL for S. typhimurium and H. pylori. In addition, amylase and protease enzyme activity was observed in AEE and increased enzyme activity was observed according to the concentration of the extract. AEE contained 7.06±0.01 mg/g of chlorogenic acid. As a result of the experiment, it is judged that it can be used as basic data for the development of health food using Aralia elata.

Physiological Activities of wild Conyza canadensis L. Extracts (야생 망초(Conyza canadensis L) 에틸알코올 추출물의 생리활성)

  • Lee, Hee Jea;Song, Hyun Sook;Lee, Geo Lyong
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • Background: Studies on the existence and activation of antioxidants in the wild Erigeron canadensis are still incomplete. Purposes: The activity of antioxidant substances was studied by extracting E. canadensis with ethyl alcohol. Methods: After washing the wild turfgrass, extraction with ethyl alcohol was used to investigate the activity of antioxidant substances using various analytical instruments. Results: The highest yield ratio of the extract was 49.3%, and it varied according to temperature and ethyl alcohol ratio. The 50:50 of water to ethyl alcohol at 180℃ was the highest yield. 100% survival rate was in the untreated group and 98-100% in the experimental group at 50 ppm or more of the extract. There was no cytotoxicity at almost all concentrations. The extract of 25 ppm was suppressed by 42% in the test group. The extract of 50 ppm reduced the free fatty acid content by 15%. Cell viability was 20% at the extract concentration of 50 ppm and 24% at 100 ppm. At an extract of 500 ppm, the free oxygen scavenging ability using DPPH and ABTs was 90-98%. When the changes in the free radical scavenging activity of DPPH and ABTs were observed in three dimensions, the antioxidant activity tended to increase at 85℃ as the temperature increased. However, at 85~130℃, it showed a rather decreasing tendency as the temperature increased. Conclusions: There were antioxidants in the ethyl alcohol extract of the wild grass, there was almost no cytotoxicity and suppressed NO production, and the scavenging function of free oxygen was also high. These results provide primary data for the various natural healing uses of the extracts of the turfgrass.

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

Oxya chinensis sinuosa Mishchenko (Grasshopper) Extract Protects INS-1 Pancreatic β cells against Glucotoxicity-induced Apoptosis and Oxidative Stress (INS-1 췌장 베타 세포에서 벼메뚜기(Oxya chinensis sinuosa Mistshenk) 추출물의 당독성 개선 효과)

  • Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.969-979
    • /
    • 2021
  • Type 2 diabetes is a serious chronic metabolic disease, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent complications from diabetes. Hyperglycemia is a key pathologic feature of type 2 diabetes that mainly results from insulin resistance and pancreatic β-cell dysfunction. Chronic exposure of β-cells to elevated glucose concentrations induces glucotoxicity. In this study, we examined whether an 80% ethanol extract of Oxya chinensis sinuosa Mishchenko (OEE) protected INS-1 pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress. Pretreatment with a high concentration of glucose (high glucose = 30 mM) induced glucotoxicity and apoptosis of INS-1 pancreatic β cells. Treatment with OEE significantly increased cell viability. Treatment with 0.01-0.20 mg/ml OEE dose dependently decreased intracellular reactive oxygen species, lipid peroxidation, and nitric oxide levels and increased insulin secretion in high glucose-pretreated INS-1 β cells. OEE also significantly increased the activities of antioxidant enzymes in response to high-glucose-induced oxidative stress. Moreover, OEE treatment significantly reduced the expressions of pro-apoptotic proteins, including Bax, cytochrome C, caspase-3, and caspase-9, and increased anti-apoptotic Bcl-2 expression. Apoptotic cells were identified using Annexin-V/propidium iodide staining, which revealed that treatment with OEE significantly reduced high-glucose-induced apoptosis. These findings implicate OEE as a valuable functional food in protecting pancreatic β-cells against glucotoxicity-induced apoptosis and oxidative stress.

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.

Effect of Gami-Chunggisan on Antioxidant and Pro-Inflammatory Cytokine (가미청기산(加味淸肌散)이 항산화와 염증성 사이토카인에 미치는 영향)

  • Lee, Youn-Jeong;Sim, Boo-Yong;Lee, Hae-Jin;Bak, Ji-Won;Kim, Dong-Hee
    • The Korea Journal of Herbology
    • /
    • v.29 no.4
    • /
    • pp.69-76
    • /
    • 2014
  • Objectives : Gami-Chunggisan extract (GCE) is one of the oriental traditional medicine. We investigated the antioxidant effect and reduction of pro-inflammatory cytokine as a functional ingredient for cosmetic products from the GCE. Methods : GCE was prepared by extracting with 80% ethanol. We analyzed total polyphenol and antioxidant activities. To evaluate antioxidant activity, we measured 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging assay. Also we measured the production of reactive oxygen species (ROS) and nitric oxide (NO) on Raw264.7 cells. We researched reduction of anti-inflammatory cytokines from concentration of GCE on Raw264.7 cells. Results : Total polyphenol quantity of GCE was included 46.6 mg/g. The GCE showed ABTS free radical scavenging ability with more than 89% at $1000{\mu}g/m{\ell}$. In addition the DPPH free radical scavenging ability from the GCE was activated over 93% at $1000{\mu}g/m{\ell}$. Production of the ROS was decreased by approximately 26%, upon the GCE treatment at concentration of $100{\mu}g/m{\ell}$. The GCE at $100{\mu}g/m{\ell}$ concentration showed inhibitory effect on NO production by 38%. Production of IL-$1{\beta}$ and IL-6 were decreased by approximately 56% and 36%, respectively upon GCE treatment at $100{\mu}g/m{\ell}$. Also, production of TNF-${\alpha}$ was decreased by approximately 79% at $100{\mu}g/m{\ell}$. Moreover, the GCE showed inhibitory effects on the expression of the IL-$1{\beta}$, IL-6 and TNF-${\alpha}$ genes in LPS-induced Raw 264.7 cells. Conclusions : From the results above, we conclude that the GCE indicated significant antioxidant effects and induced reduction of pro-inflammatory cytokine.

Vasorelaxant Effect of Prunus yedoensis leaf on Rat Aortic Rings (앵엽(櫻葉) 에탄올 추출물의 혈관이완 효능 및 작용기전에 대한 연구)

  • Lee, Kyungjin;Kim, Kwang-Woo;Heo, Heeseung;Ham, Inhye;Lee, Mi-Hwa;Kim, Bumjung;Bu, Youngmin;Kim, Hocheol;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.63-69
    • /
    • 2013
  • Objectives : The purpose of present study was to investigate the vasorelaxant activities and mechanisms of action of the ethanol extract of P. yedoensis leaf (PYL) on isolated rat aortic rings. Methods : Dried P. yedoensis leaves were extracted 3 times with 100% ethanol for 3 h in a reflux apparatus. Isolated rat aortic rings were suspended in organ chambers containing 10 ml Krebs-Henseleit (K-H) solution. The rings were maintained at $37^{\circ}C$ and aerated with a mixture of 95% $O_2$ and 5% $CO_2$. Changes in their tension were recorded via isometric transducers connected to a data acquisition system. Results : PYL relaxed the contraction of aortic rings induced by phenylephrine (PE, 1 ${\mu}M$) or KCl (60 mM) in a concentration dependent manner. However, the vasorelaxant effects of PYL on endothelium-denuded aortic rings were lower than endothelium-intact aortic rings. And the vasorelaxant effects of PYL on endothelium-intact aortic rings were reduced by pre-treatment with $N{\omega}$-Nitro-L-arginine methyl ester (10 ${\mu}M$), methylene blue (10 ${\mu}M$), 1-H-[1,2,4]-oxadiazolo-[4,3-${\alpha}$]-quinoxalin-1-one (10 ${\mu}M$), tetraethylammonium (5 mM). In addition, PYL inhibited the contraction induced by extracellular $Ca^{2+}$ in endothelium-denuded aortic rings pre-contracted by PE or KCl in $Ca^{2+}$-free K-H solution. Conclusions : These results suggest that PYL exerts its vasorelaxant effects via the activation of Nitric Oxide (NO) formation by means of L-arginine and NO-cGMP pathways and via the blockage of receptor operated calcium channels, voltage dependent calcium channels and calcium-activated potassium channels.

The anti-inflammatory effect of Lithospermum Erythrorhizon on lipopolysaccharide - induced inflammatory response in RAW 264.7 cells (LPS로 유도한 RAW 264.7 세포의 염증반응에서 자초(紫草)의 항염증 효과)

  • Choi, Sun-Bok;Bae, Gi-Sang;Jo, Il-Joo;Park, Kyoung-Chel;Seo, Seung-Hee;Kim, Dong-Goo;Shin, Joon-Yeon;Gwak, Tae-Sin;Lee, Jung-Hyun;Lee, Guem-San;Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • Objective : Lithospermum Erythrorhizon (LE) has been used as an anti-bacterial and anti-inflammatory agent. However, it is unclear that LE aqueous extract could show the anti-inflammatory effects in RAW 264.7cells. The purpose of this study was to investigate the anti-inflammatory effect of aqueous extract from LE on lipopolysaccharide (LPS) - induced inflammatory response. Methods : To measure out the cytotoxicity of LE, we performed the MTT assay. To evaluate the anti-inflammatory effects of LE, we examined the inflammatory mediators such as nitric oxide (NO), prostaglandin E2 ($PGE_2$) and pro-inflammatory cytokines (tumor necrosis factor (TNF)-${\alpha}$, interleukin, (IL)-$1{\beta}$ and (IL)-6) on RAW 264.7 cells. We also examined molecular mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor-B (NF-${\kappa}B$) activation by western blot. Results : Aqueous Extract from LE itself did not have any cytotoxic effect in RAW 264.7 cells. Aqueous extract from LE inhibited LPS-induced productions of inflammatory mediators such as NO, $PGE_2$, and pro-inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 in RAW 264.7cells. In addition, LE inhibited the phosphorylation of p38 kinases (p38), c-Jun $NH_2$-terminal kinase (JNK), and NF-${\kappa}B$ activation in RAW 264.7 cells. Conclusion : LE down-regulated LPS-induced production of inflammatory mediators through the inhibition of p38, JNK and NF-${\kappa}B$ activation. Taken together, these results could provide the evidence for the anti-inflammatory effects of LE. Therefore, LE may be a novel target in the management of inflammation and help to support a potential strategy for prevention and therapy of inflammatory diseases.

Inhibitory Effect of Water Extract from Dojuksan on LPS-induced Proinflammatory Cytokines Production in RAW 264.7 Cells (LPS로 자극한 RAW 264.7 세포에서 염증성세포활성물질 생산에 미치는 도적산(導赤散) 물 추출의 억제 효과)

  • Kim, Ji-Eun;Kim, Sung-Bae;Kang, Ok-Hwa;Shin, In-Sik;Kang, Suk-Hoon;Lee, Seung-Ho;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.28 no.3
    • /
    • pp.53-60
    • /
    • 2013
  • Objectives : DojukSan is known to be effective for treating a urinary diseases and stomatitis. However, there has been a lack of studies regarding the effects of Dojuksan on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. To elucidate the molecular mechanisms of Dojuksan water extract (DJS) on pharmacological and biochemical actions in inflammation, we examined the effect of DJS on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of MAPKs. Cells were treated with 200 ng/mL of LPS 1 h prior to the addition of DJS. Cell viability was measured by MTS assay. The investigation focused on whether DJS inhibited nitric oxide (NO) and prostaglandin E2 ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Results : We found that DJS inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, DJS suppressed the LPS-induced phosphorylation of p38 MAPK and c-Jun NH2-protein kinase (JNK). Conclusions : These results suggest that DJS has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the MAPKs phosphorylation.