• Title/Summary/Keyword: Nitric

Search Result 4,804, Processing Time 0.028 seconds

Properties of Epoxy Adhesive Modified with Siloxane-imide (실록산 이미드로 개질된 변성 에폭시 수지의 물성)

  • Kim, W.;Gong, H.J.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Peel strength of epoxy adhesives can be increased by adding some amounts of XNBR. In this case, thermal resistance of the adhesive will be decreased by decrease of glass transition temperature of the adhesive. Epoxy resin modified with siloxane-imide was synthesized to improve thermal resistance and peel strength of the adhesive, after that the properties of modified epoxy resin were compared with the commercial epoxy resin. When 5% XNBR was added to 30% modified epoxy resin, this adhesive showed 0.42 N/mm of peel strength and $155^{\circ}C$ of glass transition temperature. These properties are enough compared to the required properties by the industry, i.e., 0.3 N/mm and $150^{\circ}C$, respectively. Weight loss of the modified epoxy resin by the treatment of nitric acid and 0.1N NaOH was reduced, but weight gain by the humid condition was increased by the presence of benzene ring and imide ring. 30% modified epoxy resin blended with 5% XNBR showed 220% improvement in tensile strength and elongation compared to the case of common epoxy resin. This is due to the flexibility of the siloxane in the modified epoxy resin.

Fractionated Trapa japonica Extracts Inhibit ROS-induced Skin Inflammation in HaCaT keratinocytes (각질형성세포에서 ROS로 유도된 염증반응에 대한 능실 추출물 및 그 분획물의 항염 효과)

  • Nam, Jin-Ju;Kim, Youn Joon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • Ultraviolet B (UVB) irradiation induces both production of reactive oxygen species (ROS) and glucocorticoids (GCs)-mediated stress responses such as an increase of $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) activity in skin. In addition, ROS-induced inflammatory mediators and proinflammatory cytokines trigger skin inflammation. In this study, as $11{\beta}$-HSD1 inhibitor recovered a decrease of catalase expression, we investigated whether Trapa japonica (TJ) extract and its fractions could inhibit $11{\beta}$-HSD1/ROS-induced skin inflammation in HaCaT keratinocytes. TJ extract and its fractions inhibited expressions of $11{\beta}$-HSD1 as well as the increase of ROS in UVB-exposed HaCaT keratinocytes. Moreover, proinflammatory cytokines such as interleukin (IL)- ${\alpha}$, - ${\beta}$ and tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) as inflammatory mediators were also inhibited in both mRNA and protein levels. Finally, prostaglandin $E_2$ ($PGE_2$) produced by COX-2 was inhibited effectively by TJ extract and its fractions. Taken together, these results suggest that TJ extract could be a potential anti-inflammatory ingredient to inhibit UVB-induced inflammation in skin.

Biological activities and physicochemical properties of polysaccharides from Gloiopeltis furcata prepared by using various enzymes (효소종류에 따른 불등풀가사리 유래 다당류의 이화학적 특성 및 생리활성)

  • Lee, Dae-Hoon;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.455-463
    • /
    • 2017
  • In this study, the biological activities and physicochemical properties of polysaccharides from Gloiopeltis furcata were investigated. Polysaccharides were isolated by enzymes treatment (celluclast, flavourzyme, papain, termamyl, viscozyme) followed by ethanol precipitation and lyophilization. The yield of polysaccharides by enzymes treatment group were 52.8-66.4%. The major constituents in viscozyme treatment group were total sugar (71.04%), protein (7.22%), uronic acid (23.18 g/100 g), and sulfate (28.27%), respectively. The DPPH radical scavenging activity and ferric reducing antioxidant potential of the viscozyme treatment group at 5 mg/mL were 23.10% and $218.50{\mu}M$, respectively. The protective effects against $H_2O_2$-induced cytotoxicity in L132 cell of viscozyme treatment group at $1{\mu}g/mL$ was 85.64%. The viscozyme treatment group increased the production of nitric oxide (NO) in a dose-dependent manner. The antitumor activity of viscozyme treatment group (at $25{\mu}g/mL$) in A549, HeLa, SNU719 and MCF7 was 69.57%, 52.74%, 61.06% and 68.64%, respectively. All of data showed that the biological activities and chemical characteristics of enzymes treatment group are higher than that of the control group. The polysaccharides isolated from Gloiopeltis furcata investigated herein are useful as functional materials agents.

Antioxidant and anti-inflammatory activity of extracts from red beet (Beta vulagaris) root (레드 비트 뿌리 추출물의 항산화 및 항염증 효과)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.413-420
    • /
    • 2017
  • This study was designed to examine the in vitro antioxidant and anti-inflammatory effects of red beet (Beta vulagaris) root. Red beet root was extracted using 70% ethanol and then fractionated sequentially with n-hexane, ethyl acetate and butanol. Antioxidative ability was evaluated by bioassays using total polyphenol contents and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid diammonium salt) radical scavenging activity. Ethyl acetate fraction of red beet root was best on total polyphenol contents ($37.02{\pm}0.37mg\;GAE/g$) and ABTS radical scavenging effects ($IC_{50}$ $42.9{\pm}9.5{\mu}g/mL$). For the anti-inflammatory activity in RAW264.7 cells, the hexane fraction showed the highest inflammatory effect. Dose response studies were performed to determine the inhibitory effect of hexane fraction of red beet root on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The hexane fraction of red beet root inhibited the NO and $PGE_2$ production and the protein level of iNOS and COX-2, and protein expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$), in a dose-dependent manner. These results suggest that red beet root has considerable potential as a functional food ingredient with antioxidative and anti-inflammatory effects.

Antioxidant and anti-inflammatory activities of water extracts and ethanol extracts from Portulaca oleracea L. (쇠비름 물, 에탄올 추출물의 항산화 및 항염증 활성)

  • Kim, Dong-Gyu;Shin, Jung-Hye;Kang, Min-Jung
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Portulaca oleracea L., a species of Portulacaceae, is ubiquitous. It is a well-known traditional Chinese medicine for removing heat, counteracting toxicity, cooling blood, and maintaining hemostasia; it is also used as antidysentery agent. This study investigated the anti-oxidative and anti-inflammatory activities of water and ethanol extracts from P. oleracea. The total polyphenol content ($21.08{\pm}0.03mg\;GAE/g$) and total flavonoid content ($5.45{\pm}0.76mg\;QE/g$) of the ethanolic extracts were higher than those of the water extracts. The antioxidative activities were determined by evaluating the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and by the ferric reducing antioxidant potential (FRAP) assay. The ABTS radical scavenging activity of the water extract (75.53%) was higher in those of the water extract (67.03%) at concentration of $1,000{\mu}g/mL$. The DPPH radical scavenging activity and FRAP of the ethanol extract were higher than those of the water extract. We also investigated the anti-inflammatory activity of the P. oleracea extracts in LPS-stimulated Raw 264.7 cells. The production levels of nitric oxide (NO) and reactive oxygen species (ROS) significantly decreased with an increasing concentration of the extract. The expression levels of pro-inflammatory cytokines (tumor necrosis faction (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6) were significantly lower in the ethanol extract than in the LPS alone treatment group. Based on these results, ethanolic extract from P. oleracea could be an effective antioxidant and anti-inflammatory agent.

Antioxidant activities and anti-inflammatory effects of fresh and air-dried Abeliophyllum distichum Nakai leaves (건조방법에 따른 미선나무 잎의 항산화 및 항염증 효과)

  • Chang, Seong Jun;Jeon, Nam Bae;Park, Joo Won;Jang, Tae Won;Jeong, Jin Boo;Park, Jae Ho
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In this study, we evaluated the antioxidant activity and anti-inflammatory effects of Abeliophyllum distichum (A. distichum) leaves that were prepared via air-drying. Fresh and air-dried A. distichum leaves were examined via 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging assay and measurements of the reducing power. The suppression effects on inflammation of the leaves were analyzed by a western blot and RT-PCR on LPS-induced RAW 264.7 cells. As a result, the antioxidant activity of the fresh leaves was found to be more effective than that of the air-dried leaves. Also, the fresh leaves were more effective in suppressing the protein and mRNA levels of iNOS and COX-2 than the air-dried leaves, thereby indicating the better anti-inflammatory effects. In addition, the contents of phenolic compounds and acteoside were analyzed by high-performance liquid chromatography (HPLC). The results showed that the acteoside content decreased with the use of the air-drying method, while there was no change in the content of phenolic compounds. Therefore, this study indicated that fresh A. distichum leaves potential antioxidant and suppression activities of various factors that are involved in the production of NO, which were found to be better than those of air-dried A. distichum leaves. These biological activities were also found to be independent of the content of phonolic compounds and were assumed to be directly or indirectly related to the content of acteoside.

In vitro correlation between anti-inflammatory and anti-oxidant effects of stone and seed of peaches cultivars (복숭아 품종별 핵과 종자의 항염증 및 항산화 효과간의 상관관계)

  • Jung, Kyung-Mi;Bae, Seung-hwa
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.90-97
    • /
    • 2018
  • Peach seeds contain a large amount of phenolic components and exhibit excellent physiological effects in various diseases. We examined the antioxidant effects of stone and seed of three peach cultivars (Miwhang, MH; Kanoiwa hakuto, KH; and Cheonhong, CH) by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, ferric reducing activity of plasma (FRAP) assay, and cupric ion reducing antioxidant capacity (CUPRAC) reduction. The results showed that the stone extracts of CH had higher levels of total phenols and flavonoids than those of the other cultivars do, and the stone extracts of KH and CH have the potential to reduce DPPH, FRAP, and CUPRAC activities. In addition, we found that KH, MH, and CH stone extracts decreased nitric oxide generation in RAW 264.7 and BV2 cells. The total phenol and flavonoid contents had no significant correlation with anti-oxidant activities. On the other hand, the anti-inflammatory activity had a low linear correlation with anti-oxidant activities and total phenol and flavonoid contents. The present results suggest that the correlation between antioxidant and anti-inflammatory effects of stone and seed, and the appropriate combination of the stone and seed extracts could be used as an anti-inflammatory treatment and prevention material, respectively.

Anti-inflammatory Effect of the Robinia pseudoacacia L. High Temperature Extract (아까시 나무 고온추출물의 항염증 효과)

  • Nho, Jong Hyun;Kang, Byoung Man;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.294-302
    • /
    • 2018
  • This study was conducted to compare anti-inflammatory effect of Robinia pseudoacacia L. using different extraction methods (water extraction, ethanol extraction and high temperature extraction). We investigated anti-inflammatory effect of Robinia pseudoacacia L. extract (RP1, water extract; RP2, ethanol extract; RP3, high temperature extract) on lipopolysaccharide (LPS)-stimulated inflammation using Raw 264.7 cell. Cells were treated with various concentrations (12.5, 25, 50, 100 or $200{\mu}g/m{\ell}$) of water extract, ethanol extract and high temperature extract. Cytotoxicity was not observed on Raw 264.7 cells, LPS-stimulated production of NO (nitric oxide), $PGE_2$ (prostaglandin $E_2$) and cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$) was reduced by RP3 treatment more than RP1 and RP2. In conclusion, these results indicated that inflammation on Raw 264.7 cells was improved by RP3. Treatment of RP3 could be used to natural medicine for improving inflammatory response. However, further experiment is required to observe how the high temperature extraction at $500^{\circ}C$ for 48 h influences on alteration of active ingredient in Robinia pseudoacacia L., and conducts the inflammation signal pathway on Raw 264.7 cells.

Anti-inflammatory activity of indigenous Tuber himalayense in Korea (자생 Tuber himalayense 자실체 추출물의 항염증 활성)

  • Kim, Minkyeong;Hong, Hyehyun;Kim, Jung-Hwan;Kim, Seung-Young;Kim, Changmu
    • Journal of Mushroom
    • /
    • v.19 no.3
    • /
    • pp.176-183
    • /
    • 2021
  • In this study, the anti-inflammatory activity of an extract of the fruiting body of the Tuber himalayense (TH) truffle collected from oak growing areas in Korea was investigated. The extract was not cytotoxic at concentrations below 100 ㎍/mL in an experiment evaluating inflammation inhibitory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production was inhibited by the extract in a concentration-dependent manner. Western blot assay results indicated that the anti-inflammatory activity of TH extract was likely caused by the reduced production of NO and PGE2 via suppression of induced NO synthase and cyclooxygenase-2 gene expression. In addition, TH extract effectively inhibited the production of interleukin (IL)-1β and IL-6 by macrophages. Thus, TH extract effectively inhibits the overexpression of various inflammatory mediators and could be valuable in formulating anti-inflammatory foods and medicines that target these components.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.