Browse > Article
http://dx.doi.org/10.15230/SCSK.2015.41.1.45

Fractionated Trapa japonica Extracts Inhibit ROS-induced Skin Inflammation in HaCaT keratinocytes  

Nam, Jin-Ju (Cosmax R&I Center)
Kim, Youn Joon (Cosmax R&I Center)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.41, no.1, 2015 , pp. 45-55 More about this Journal
Abstract
Ultraviolet B (UVB) irradiation induces both production of reactive oxygen species (ROS) and glucocorticoids (GCs)-mediated stress responses such as an increase of $11{\beta}$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1) activity in skin. In addition, ROS-induced inflammatory mediators and proinflammatory cytokines trigger skin inflammation. In this study, as $11{\beta}$-HSD1 inhibitor recovered a decrease of catalase expression, we investigated whether Trapa japonica (TJ) extract and its fractions could inhibit $11{\beta}$-HSD1/ROS-induced skin inflammation in HaCaT keratinocytes. TJ extract and its fractions inhibited expressions of $11{\beta}$-HSD1 as well as the increase of ROS in UVB-exposed HaCaT keratinocytes. Moreover, proinflammatory cytokines such as interleukin (IL)- ${\alpha}$, - ${\beta}$ and tumor necrosis factor (TNF)-${\alpha}$, and cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) as inflammatory mediators were also inhibited in both mRNA and protein levels. Finally, prostaglandin $E_2$ ($PGE_2$) produced by COX-2 was inhibited effectively by TJ extract and its fractions. Taken together, these results suggest that TJ extract could be a potential anti-inflammatory ingredient to inhibit UVB-induced inflammation in skin.
Keywords
Trapa japonica extract; reactive oxygen species; $11{\beta}$-hydroxysteroid dehydrogenase type 1; ultraviolet B; skin inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. C. Lebert and A. Huttenlocher, Inflammation and wound repair, Semin. Immunol., 26(4), 315 (2014).
2 A. Amaro-Ortiz, B. Yan, and J. A. D'Orazio, Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation, Molecules, 19(5), 6202 (2014).   DOI
3 H.-Y. Thong and H. I. Maibach, Irritant dermatitisas a model of inflammation, Drug Discov. Today: Disease Mechanisms, 5(2), 221 (2008).   DOI
4 Y. Matsumura and H. N. Ananthaswamy, Toxic effects of ultraviolet radiation on the skin, Toxicol. Appl. Pharmacol., 195(3), 298 (2004).   DOI
5 A. Takashima and P. R. Bergstresser, Impact of UVB radiation on the epidermal cytokine network, Photochem. Photobiol., 63(4), 397 (1996).   DOI
6 A. Pupe, R. Moison, P. D. Haes, G. Beijersbergen van Henegouwen, L. Rhodes, H. Degreef, and M. Garmyn, Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-${\alpha}$, IL-1${\alpha}$, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes, J. Invest. Dermatol., 118(4), 692 (2002).   DOI   ScienceOn
7 B. Nedoszytko, M. Sokolowska-Wojdylo, K. Ruckemann-Dziurdzinska, J. Roszkiewicz, and R. J. Nowicki, Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis, Postepy. Dermatol. Alergol., 31(2), 84 (2014).
8 I. Striz, E. Brabcova, L. Kolesar, and A. Sekerkova. Cytokine networking of innate immunity cells: a potential target of therapy, Clin. Sci. (Lond)., 126(9), 593 (2014).   DOI
9 F. Giuliano and T. D. Warner, Origins of prostaglandin E2: involvements of cyclooxygenase (COX)-1 and COX-2 in human and rat systems, J Pharmacol. Exp. Ther., 303(3), 1001 (2002).   DOI   ScienceOn
10 M. Schafer and S. Werner, Oxidative stress in normal and impaired wound repair, Pharmacol. Res., 58(2), 165 (2008).   DOI
11 C. H. Hong, S. K. Hur, O. J. Oh, S. S. Kim, K. A. Nam, and S. K. Lee. Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells, J. Ethnopharmacol., 83(1-2), 153 (2002).   DOI
12 Y. H. Jean, W. F. Chen, C. Y. Duh, S. Y. Huang, C. H. Hsu, C. S. Lin, C. S. Sung, I. M. Chen, and Z. H. Wen, Inducible nitric oxide synthase and cyclooxygenase- 2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni, Eur. J. Pharmacol., 578(2-3), 323(2008).   DOI
13 G. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaging-dependent changes of enzymic and noenzyme antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 117(5), 1212 (2001).   DOI
14 M. M. Suter, K. Schulze, W. Bergman, M. Welle, P. Roosje, and E. J. Muller, The keratinocyte in epidermal renewal and defence, Vet. Dermatol., 20(5-6), 515 (2009).   DOI
15 T. Bito and C. Nishigori, Impact of reactive oxygen species on keratinocyte signaling pathways, J. Dermatol. Sci., 68(1), 3 (2012).   DOI
16 H. Masaki, Role of antioxidants in the skin: Anti-aging effects, J. Dermatol. Sci., 58(2), 85 (2010).   DOI
17 S. Itoi, M. Terao, H. Murota, and I. Katayama, $11{\beta}$ -Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes, Biochem. Biophys. Res. Commun., 440(2), 265 (2013).   DOI
18 R. T. Narendhirakannan and M. A. Hannah, Oxidative stress and skin cancer: an overview, Indian J. Clin. Biochem., 28(2), 110 (2013).   DOI
19 M. Wamil and J. R. Seckl, Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 as a promising therapeutic target, Drug Discov. Today, 12(13-14), 504 (2007).   DOI
20 J. S. Scott, F. W. Goldberg, and A. V. Turnbull, Medicinal chemistry of inhibitors of $11\beta$-hydroxysteroid dehydrogenase type 1 ($11{\beta}$-HSD1), J. Med. Chem., 57(11), 4466 (2014).   DOI
21 M. Terao, H. Murota, A. Kimura, A. Kato, A. Ishikawa, K. Igawa, E. Miyoshi, and I. Katayama, $11{\beta}$-hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair, PLoS ONE, 6(9), e25039 (2011).   DOI
22 A. Tiganescu, E. A. Walker, R. S. Hardy, A. E. Mayes, and P. M. Stewart, Localization, age- and site-dependent expression, 11beta-hydroxysteroid dehydrogenase type 1 in skin, J. Invest. Dermatol., 131(1), 30 (2011).   DOI
23 A. Tiganescu, A. A. Tahrani, S. A. Morgan, M. Otranto, A. Desmouliere, L. Abrahams, Z. Hassan-Smith, E. A. Walker, E. H. Rabbit, M. S. Cooper, K. Amrein, G. G. Lavery, and P. M. Stewart, $11{\beta}$-Hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects, J. Clin. Invest., 123(7), 3051 (2013).   DOI
24 C. Skobowiat, R. M. Sayre, J. C. Dowdy, and A. T. Slominski, Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo, Br. J. Dermatol., 168(3), 595 (2013).   DOI
25 U. Wolfle, P. R. Esser, B. Simon-Haarhaus, S. F. Martin, J. Lademann, and C. M. Schempp, UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo, Free Radic. Biol. Med., 50(9), 1081 (2011).   DOI
26 M. Schieber and N. S. Chandel, ROS function in redox signaling and oxidative stress, Current biol., 24(10), 453 (2014).   DOI
27 G. E. Rhie, J. Y. Seo, and J. H. Chung, Modulation of catalase in human skin in vivo by acute and chronic UV radiation, Mol. Cells, 11(3), 399 (2001).
28 J. W. Cha, M. J. Piao, K. C. Kim, C. W. Yao, J. Zheng, S. M. Kim, C. L. Hyun, Y. S. Ahn, and J. W. Hyun, The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes, Biomol. Ther. 22(2), 136 (2014).   DOI   ScienceOn
29 R. E. Maldve, Y. Kim, S. J. Muga, and S. M. Fischer, Prostaglandin E(2) regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors, J. Lipid. Res., 41(6), 873 (2000).