• Title/Summary/Keyword: Nilpotent

Search Result 160, Processing Time 0.02 seconds

A PROPERTY OF P-INJETIVE RING

  • Hong, Chan-Yong
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.141-144
    • /
    • 1992
  • In this paper, some properties of p-injective ring is studied: The Jacobson radical of a pinjective ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Also, the left singular ideal of a ring which satisfies the ascending chain condition on essential left ideals is nilpotent. Finally, we give an example which shows that a semiprime left p-injective ring such that every essential left ideal is two-sided is not necessarily to be strongly regular.egular.

  • PDF

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

  • Cho, June-Rae;Kim, Nam-Kyun;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radicals(prime radical, upper nilradical and generalized nilradical). Given a ring R, consider the condition: (*) nilpotent elements of R form an ideal in R. We show that a ring R satisfies (*) if and only if every minimal strongly prime ideal of R is completely prime if and only if the upper nilradical coincides with the generalized nilradical in R.

  • PDF

IFP RINGS AND NEAR-IFP RINGS

  • Ham, Kyung-Yuen;Jeon, Young-Cheol;Kang, Jin-Woo;Kim, Nam-Kyun;Lee, Won-Jae;Lee, Yang;Ryu, Sung-Ju;Yang, Hae-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.727-740
    • /
    • 2008
  • A ring R is called IFP, due to Bell, if ab=0 implies aRb=0 for $a,b{\in}R$. Huh et al. showed that the IFP condition need not be preserved by polynomial ring extensions. But it is shown that ${\sum}^n_{i=0}$ $E_{ai}E$ is a nonzero nilpotent ideal of E whenever R is an IFP ring and $0{\neq}f{\in}F$ is nilpotent, where E is a polynomial ring over R, F is a polynomial ring over E, and $a_i^{'s}$ are the coefficients of f. we shall use the term near IFP to denote such a ring as having place near at the IFPness. In the present note the structures of IFP rings and near-IFP rings are observed, extending the classes of them. IFP rings are NI (i.e., nilpotent elements form an ideal). It is shown that the near-IFPness and the NIness are distinct each other, and the relations among them and related conditions are examined.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF