• Title/Summary/Keyword: Nickel Ion

Search Result 272, Processing Time 0.027 seconds

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

Nickel Complexes of Alanine Having a Preference for One Chiral Form over Another upon Crystallization

  • Khatib, Awni;Aqra, Fathi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2017-2020
    • /
    • 2009
  • Three complexes, [bis(L-, D- and DL-alaninato)(diaqua)]nickel(II) di-hydrate, were prepared and characterized by X-ray crystallography, gas chromatography, UV-Visible spectroscopy and isothermal calorimetry. Small deviations from the 50:50 distribution of the enantiomers assigned to chiral preferences of the ligands in the complexes were observed. The surprising and unexpected results indicate that complexing alanine with nickel(II) ion alters the racemization rates of D and L isomers of the amino acid. The precipitated complex due to change in pH resulted in preferential precipitation of one isomer with respect to the other. It has been observed that this alternation is ogmented by the long time span which would result in preferential protein forming from the L-isomer. Although the results are bizarre and perplexing, they are fascinating and sound scientifically.

Thermal stability improvement of nickel germane-silicide with Ni/Co/Ni on silicon-germanium (Ni/Co/Ni를 적용한 Ni germane-silicide의 열 안정성 개선)

  • 황빈봉;지희환;오순영;배미숙;윤장근;김용구;박영호;왕진석;이희덕
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1069-1072
    • /
    • 2003
  • Germane-sillicide phase formation on S $i_{0.25}$G $e_{0.75}$ with Ni 100$\square$, Co 10$\square$/Ni 100$\square$ and Ni 50$\square$/Co 10$\square$/Ni 50$\square$ layer was studied by sheet resistance and Field Emission Scanning Electron Microscopy(FESEM). Thermal stability of nickel germane-silicide is found to be improved by sputtering Ni/Co/Ni on the SiGe. After annealing at 600, 650, $700^{\circ}C$, 30min., the nickel germane-silicide formed by Ni 50$\square$/Co 10$\square$/Ni 50$\square$ layer achieved a sheet resistance less than 17ohms/sq.(almost the same to the value before furnace annealing for 30min.) , while the process of the other two ways result in high sheet resistance and even sheet resistance fail due to Ge segregation.ion.

  • PDF

Electrochemical Study of Nickel(II) Complexes with Diaza-Macrocyclic Ligands in Acetonitrile

  • Moo-Lyong Seo;Zun-Ung Bae;Tae-Myoung Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.368-370
    • /
    • 1991
  • The electrochemical behavior and the complex formation between N$i^{2+}$ and 1,7-diazs-15-crown-5 and 1,10-diaza-18-crown-6 in acetonitrile solution have been studied by DC polarography, differential puke polarography and cyclic voltammetry. Nickel(Ⅱ) complexes gave a single well-defined wave. The formation constants of their complexes were 1$0^{4.89} and 10^{3.86}$, respectively. Nickel(Ⅱ) ion was found to form complexes of 1-to-1 composition with 1,7-diaza-15-crown-5 and 1,10-diaza-18-crown-6. In addition, reduction steps were irreversible and the reduction current were diffusion controlled. The electrochemical reduction mechanism of Ni(Ⅱ)-macrocyclic diaza-crown complexes in acetonitrile solution is estimated.

The Limiting Current Density and the Regeneration of a Heterogeneous Ion Exchange Membrane in a Nickel Plating Rinse Waters Treatment Process by Electrodialysis (전기투석에 의한 니켈도금 폐수처리 공정에서 한계전류밀도와 불균질 이온교환막의 재생)

  • 윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.38-46
    • /
    • 2001
  • In this work, the heterogeneous ion exchange membrane was used in a electrodialysis apparatus to treat a Ni planting rinse water because the heterogeneous ion exchange membrane was excellent efficiency as compared with low manufacturing cost, was easy to make, and had a good mechanical properties. For a regeneration of membrane and to obtain the optimal condition for a scale-up of apparatus after treating Ni plating rinse water, we would find about the limiting current density and the concentration polarization. When the Ni plating rinse water 150mg/L was treated with the electrodialysis apparatus using the heterogeneous ion exchange membrane, the limiting current density was about $1.49{\;}mA/\textrm{cm}^2$. And the limiting current density increased with the flow rate and concentration of Ni plating rinse water. We recognized that the used membrane could be reused by periodic backwashing because efficiency was constant when the membrane was backwashed after treating wastewater.

  • PDF

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products (재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교)

  • Park, Sung Cheol;Kim, Yong Hwan;Shin, Ho Jung;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.55-62
    • /
    • 2021
  • In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.

Nano-Morphology Design of Nickel Cobalt Hydroxide on Nickel Foam for High-Performance Energy Storage Devices (고성능 에너지 저장 소자를 위한 니켈 구조체에 담지된 니켈 코발트 수산화물의 나노 형상 제어)

  • Shin, Dong-Yo;Yoon, Jongcheon;Ha, Cheol Woo
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.710-718
    • /
    • 2021
  • Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.

Thermal Stability Enhancement of Nickel Monosilicides by Addition of Iridium (이리듐 첨가에 의한 니켈모노실리사이드의 고온 안정화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.571-577
    • /
    • 2006
  • We fabricated thermal evaporated 10 nm-Ni/(poly)Si and 10 nm-Ni/1 nm-Ir/(poly)Si films to investigate the thermal stability of nickel monosilicide at the elevated temperatures by rapid annealing them at the temperatures of $300{\sim}1200^{\circ}C$ for 40 seconds. Silicides for salicide process was formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester is used for sheet resistance. Scanning electron microscope and field ion beam were employed for thickness and microstructure evolution characterization. An x-ray diffractometer and an auger depth profile scope were used for phase and composition analysis, respectively. Nickel silicides with iridium on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1200^{\circ}C$ and $800^{\circ}C$, respectively, while the conventional nickel monosilicide showed low resistance below $700^{\circ}C$. The grain boundary diffusion and agglomeration of silicides led to lower the NiSi stable temperature with polycrystalline silicon substrates. Our result implies that our newly proposed Ir added NiSi process may widen the thermal process window for nano CMOS process.