Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.710

Nano-Morphology Design of Nickel Cobalt Hydroxide on Nickel Foam for High-Performance Energy Storage Devices  

Shin, Dong-Yo (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology)
Yoon, Jongcheon (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology)
Ha, Cheol Woo (Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 710-718 More about this Journal
Abstract
Recently, due to high theoretical capacitance and excellent ion diffusion rate caused by the 2D layered crystal structure, transition metal hydroxides (TMHs) have generated considerable attention as active materials in supercapacitors (or electrochemical capacitors). However, TMHs should be designed using morphological or structural modification if they are to be used as active materials in supercapacitors, because they have insulation properties that induce low charge transfer rate. This study aims to modify the morphological structure for high cycling stability and fast charge storage kinetics of TMHs through the use of nickel cobalt hydroxide [NiCo(OH)2] decorated on nickel foam. Among the samples used, needle-like NiCo(OH)2 decorated on nickel foam offers a high specific capacitance (1110.9 F/g at current density of 0.5 A/g) with good rate capability (1110.9 - 746.7 F/g at current densities of 0.5 - 10.0 A/g). Moreover, at a high current density (10.0 A/g), a remarkable capacitance (713.8 F/g) and capacitance retention of 95.6% after 5000 cycles are noted. These results are attributed to high charge storage sites of needle-like NiCo(OH)2 and uniformly grown NiCo(OH)2 on nickel foam surface.
Keywords
nickel cobalt hydroxide; nano-morphology; supercapacitors; active materials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Chen, H. Li, J. Xu, F. Jaber, F. Musharavati, E. Zalnezhad, S. Bae, K. S. Hui, K. N. Hui and J. Liu, Nanomaterials, 10, 1292 (2020).   DOI
2 A. Gowrisankar and T. Selvaraju, Langmuir, 37, 5964 (2021).   DOI
3 D.-Y. Shin, G.-H. An and H.-J. Ahn, Ceram. Int., 44, 4883 (2018).   DOI
4 W. He, G. Zhao, P. Sun, P. Hou, L. Zhu, T. Wang, L. Li, X. Xu and T. Zhai, Nano Energy, 56, 207 (2019).   DOI
5 P. Yao, Z. Li, J. Zhu, X. Ran, Z. Shi and J. Zhu, J. Alloys Compd., 875, 160042 (2021).   DOI
6 C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu and X. Xu, Nanomaterials, 7, 41 (2017).   DOI
7 K. Patil, P. Babar and J. H. Kim, Korean J. Mater. Res., 30, 217 (2020).   DOI
8 Y. Zhang, Y. Yang, L. Yu, X. Meng, F. Wen, J. Zhang, H. Bi, X. Wang and J. Zhu, Mater. Chem. Phys., 218, 172 (2018).   DOI
9 J. T. Zhang, S. Liu, G. L. Pan, G. R. Li and X. P. Gao, J. Mater. Chem. A, 2, 1524 (2014).   DOI
10 W. Wang, Z. Li, A. Meng and Q. Li, J. Solid State Electrochem., 23, 635 (2019).   DOI
11 H.-G. Jo, D.-Y. Shin and H.-J. Ahn, Korean J. Mater. Res., 29, 167 (2019).   DOI
12 D.-Y. Sin, E.-H. Lee, M.-H. Park and H.-J. Ahn, Korean J. Mater. Res., 26, 393 (2016).   DOI
13 Y.-G. Lee, H. Jang and G.-H. An, Korean J. Mater. Res., 30, 458 (2020).   DOI
14 K. Keum, J. W. Kim, S. Y. Hong, J. G. Son, S.-S. Lee and J. S. Ha, Adv. Mater., 32, 2002180 (2020).   DOI
15 D.-Y. Shin, J. S. Lee, B.-R. Koo and H.-J. Ahn, Chem. Eng. J., 412, 128547 (2021).   DOI
16 D.-Y. Shin, K.-W. Sung and H.-J. Ahn, Appl. Surf. Sci., 478, 499 (2019).   DOI
17 S. R. Ede, S. Anantharaj, K. T. Kumaran, S. Mishra and S. Kundu, RSC Adv., 7, 5898 (2017).   DOI
18 H. Jiang, T. Zhao, C. Li and J. Ma, J. Mater. Chem., 21, 3818 (2011).   DOI