Effect of Current Density on Nickel Surface Treatment Process

니켈 표면처리공정에서 전류밀도 효과분석

  • Kim, Yong-Woon (Department of Chemical Engineering, Dankook University) ;
  • Joeng, Koo-Hyung (Department of Chemical Engineering, Dankook University) ;
  • Hong, In-Kwon (Department of Chemical Engineering, Dankook University)
  • 김용운 (단국대학교 공과대학 화학공학과) ;
  • 정구형 (단국대학교 공과대학 화학공학과) ;
  • 홍인권 (단국대학교 공과대학 화학공학과)
  • Received : 2008.01.28
  • Accepted : 2008.03.25
  • Published : 2008.04.10

Abstract

Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

니켈 표면처리 공정에서 전류밀도에 따라 니켈의 전착두께가 증가되었으며, 증가폭은 $6{\sim}10A/dm^2$에서 저전류보다 높게 나타났다. 전류밀도를 측정하기 위해 Hull-cell 분석을 수행 하였다. 최적 공정온도는 $60^{\circ}C$, pH는 3.5~4.0이었고, 전해용액 중 니켈이온의 농도는 300 g/L 이상에서 농도에 따라 전착두께가 증가되었다. 전류밀도에 따라 용액 중 니켈이온 감소 속도가 증가되었는데, 이는 음극표면에서 니켈 전착 량에 따른 전착두께의 증가를 나타낸다. 그러나 전착속도가 빠를 경우 니켈 전착 층의 치밀성은 저하되며, 표면의 상태는 불규칙하게 변화된다. 니켈이온의 전착과정이 불규칙하게 일어나 조직의 pin hole 등을 야기해 표면특성을 저하시키는 것으로 확인되었다. 광택니켈 전착 후 25 h 내식을 유지한 결과, 낮은 전류밀도를 유지하는 것이 내식특성이 우수한 것으로 나타났다. 프로그램모사 결과, 전류밀도가 높아질수록 확산 층의 두께는 증가하며, 음극표면의 농도는 낮아진다. 농도분포는 낮은 전류밀도에서 고른 분포를 나타내었으며 이는 일정한 전착두께를 예측할 수 있다. 생산성 저하를 예방하기 위해 공정시간은 크게 변화시키지 않았으며, 전류밀도와 전착두께를 변화시키면서 공정변수를 조절하였다. 본 연구의 표면분석 결과 조직특성이나 내식성 등의 표면 물성이 낮은 전류밀도를 사용할 경우에 더욱 우수한 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. Gyorgy Pátzay, Reactive & Functional Polymer, 27, 83 (1995) https://doi.org/10.1016/1381-5148(95)00045-H
  2. Viktoria R. T. Hsu, J. Computational and Applied Mathematics, 183, 1 (2005) https://doi.org/10.1016/j.cam.2004.12.024
  3. L. K. BieniaszN, J. Electroanalytical Chem., 565, 273 (2004) https://doi.org/10.1016/j.jelechem.2003.10.019
  4. C. Xu, M. Li, X. Zhang, K.-N. Tu, and Y. Xie, Electrochimica Acta, 52, 3901 (2007) https://doi.org/10.1016/j.electacta.2006.11.007
  5. P. Schaetzel and B. Auclair, Electrochimica Acta, 43, 3375 (1998) https://doi.org/10.1016/S0013-4686(98)00067-X
  6. G. Marshall, F. V. Molina, and A. Soba, Electrochimica Acta, 50, 3436 (2005) https://doi.org/10.1016/j.electacta.2004.12.018
  7. Y. Zhang, M. Liu, M. Wang, Q. Xie, and S. Yao, Sensors and Actuators B, 123, 444 (2007) https://doi.org/10.1016/j.snb.2006.09.017
  8. B. S. Haran, B. N. Popov. G. Zheng, and R. E. White, J. Hazardous Materials, 55, 93 (1997) https://doi.org/10.1016/S0304-3894(97)00009-5
  9. J. Lim, J. Whitcomb, J. Boyd, and J. Varghese, J. of Colloid and Interface Science, 305, 159 (2007) https://doi.org/10.1016/j.jcis.2006.08.049