• Title/Summary/Keyword: NiTi thin film

Search Result 55, Processing Time 0.032 seconds

SHAPE MEMORY THIN FILM OF TITANIUM-NICKEL FOR MICROACTUATOR FORMED BY SPUTTERING

  • Takei, A.;Ishida, A.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.424-429
    • /
    • 1996
  • Thin films of Ti-Ni alloy were formed by sputtering under various Ar gas pressures and r. f. powers to investigate the optimum sputtering conditions and to demonstrate their shape memory effect. The composition and structure of the films were examined by electron micro-probe analysis and scanning electron microscope. These films were annealed in order to crystallize them. The mechanical property of the annealed films was evaluated by a conventional bending test. The transformation tmeperatures were determined by differential scanning calorimetry. The shape memory behaviour was examined quantiatatively by changing in sample temperature under various constant loads. It was found that the Ar gas pressure had a critical effect on the mechanical property of the thin film,s although the r.f. power also affected it. The films formed at a high Ar gas pressure were too brittle to be bent successfully. However, the films formed at a low Ar gas pressur could be bent and their shape memory behavior was found to be comparable with that of bulk Ti-Ni alloys.

  • PDF

Domain Wall Motions in Ferromagnetic Thin Film Induced by Laser Heating Pulse

  • Park, Hyun Soon
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.128-129
    • /
    • 2018
  • Soft ferromagnetic materials are utilized for various electromagnetic devices such as magnetic recording heads and magnetic shielding. In situ observation of magnetic microstructures and domain wall motions are prerequisite for understanding and improving their magnetic properties. In this work, by the Fresnel (out-of-focus) method of Lorentz microscopy, we observe the domain wall motions of polycrystalline Ni/Ti thin film layers triggered by single-shot laser pulse. Random motions of domain walls were visualized at every single pulse.

Electrical properties of PZT films on Pt and $LaNiO_3$ electrode by using sol-gel method (Pt와 $LaNiO_3$ 전극에 대한 PZT(53/47) sol-gel 막의 전기적 특성)

  • Seo, Byung-Jun;Yeo, Ki-Ho;Ryu, Ji-Goo;Kim, Kang-Eon;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.641-643
    • /
    • 2003
  • The ferroelectric properties of PZT(53/47) thin film was investigated by methoxy enthanol solution based on sol-gel method. The thickness of each layer by spincoating 0.25M sol at one time was $0.1{\mu}m$ and crack-free film was formed. $LaNiO_3/Si(100)$ electrode and $Pt/Ti/SiO_2/Si(100)$ electrode was coated by PZT sol at several times. PZT orientation was confirmed as a method of XRD and coercive field(Ec) as well as remnant polarization(Pr) was investigated from hysterisis curve. As a result of XRD analysis, we can know that the orientation of on PZT/LNO/Si(100) is better than on $Pt/Ti/SiO_2/Si(100)$. The remnant polarization(Pr) in LNO electrode was $87.5{\mu}C/cm^2$ and $39.8{\mu}C/cm^2$ in Pt. From this figures, it is investigated that the Pr in LNO electrode was better than in Pt.

  • PDF

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Effects of (100) Orientation of LaNiO3 on the Growth and Ferroelectric Properties of Pb(Zr,Ti)O3 Thin Films (LaNiO3의 (100)배향성이 Pb(Zr,Ti)O3 박막의 결정성장과 강유전성에 미치는 영향)

  • Park, Min-Seok;Seo, Byung-Joon;Yoo, Young-Bae;Moon, Byung-Kee;Son, Se-Mo;Chung, Su-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.338-343
    • /
    • 2005
  • Pb(Zr,Ti)O₃[PZT] thin films were prepared on a highly (100) oriented LaNiO₃[LNO] and a randomly oriented LNO by sol-gel process. The PZT thin films on a highly (100) oriented LNO show a high (100) crystal orientation (F=100 %), those on a randomly oriented LNO show a random crystal orientation (F=60 %). All the PZT layer have a flat and dense microstructure with large columnar grains and their grain size are 25 nm. In the ferroelectric curves at electric field of 40 kV/cm, a highly (100) oriented PZT/LNO samples show coercive field, E/sub c/=10 kV/cm and remanent polarization, P/sub r/=14.5 μC/㎠, while a randomly oriented PZT/LNO sample show E/sub c/=10 kV/cm and P/sub r/=5.4 μC/㎠.

Ferroelectric properties of $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ thin films prepared by metalorganic decomposition method (MOD법으로 제작한 $Bi_{3.25}La_{0.75}Ti_3O_{12}/LaNiO_3$ 박막의 강유전 특성에 관한 연구)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung;Lee, Cheol-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.352-355
    • /
    • 2003
  • [ $Bi_{3.25}La_{0.75}Ti_3O_{12}$ ] (BLT) thin films were prepared by using metal organic decomposition method onto the LaNiO3 (LNO) bottom electrode. Both the structure and morphology of the films were analyzed by x-ray diffraction (XRD) and atomic force microscope (AFM). Even at low temperatures ranging from 450 to $650^{\circ}C$, the BLT thin films were successfully deposited on LNO bottom electrode and exhibited (117) orientation. The BLT thin films annealed as low as $600^{\circ}C$ showed excellent ferroelectricity, higher remanent polarization and no significant degradation of switching charge at least up to $5{\times}10^9$ switching cycles at a frequency of 100 kHz and 5 V. For the annealing temperature of $600^{\circ}C$, the remanent polarization $P_r$ and coercive field were $23.5\;{\mu}C/cm^2$ and 120 kV/cm, respectively.

  • PDF

Fabrication and characteristic of thin-film NTC thermal sensors (박막형 NTC 열형 센서의 제작 및 특성 평가)

  • Yoo, Mi-Na;Lee, Moon-Ho;Yu, Jae-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Characteristics of thin-film NTC thermal sensors fabricated by micromachining technology were studied as a function of the thickness of membrane. The overall-structure of thermal sensor has a form of Au/Ti/NTC/$SiO_{X}$/(100)Si. NTC film of $Mn_{1.5}CoNi_{0.5}O_{4}$ with 0.5 mm in thickness was deposited on $SiO_{X}$ layer (1.2 mm) by PLD (pulsed laser deposition) and annealed at 873-1073 K in air for 1 hour. Au(200 nm)/Ti(100 nm) electrode was coated on NTC film by dc sputtering. By the results of microstructure, X-ray and NTC analysis, post-annealed NTC films at 973 K for 1 hour showed the best characteristics as NTC thermal sensing film. In order to reduce the thermal mass and thermal time constant of sensor, the sensing element was built-up on a thin membrane with the thickness of 20-65 mm. Sensors with thin sensing membrane showed the good detecting characteristics.

Effect of Vacuum Annealing on Thin Film Nickel Silicide for Nano Scale CMOSFETs

  • Zhang, Ying-Ying;Oh, Soon-Young;Kim, Yong-Jin;Lee, Won-Jae;Zhong, Zhun;Jung, Soon-Yen;Li, Shi-Guang;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.10-11
    • /
    • 2006
  • In this study, the Ni/Co/TiN (6/2/25 nm) structure was deposited for thermal stability estimation. Vacuum (30 mTorrs) annealing was carried out to compare with furnace annealing in nitrogen ambient. The proposed Ni/Co/TiN structure exhibited low temperature silicidation and wide range of rapid thermal process (RTP) windows. The sheet resistance was too high to measure after furnace annealing at $600^{\circ}C$ due to the thin thickness (15 nm) of the nickel silicide. However, the sheet resistance maintained stable characteristics up to $600^{\circ}C$ for 30 min after vacuum annealing. Therefore, the low resistance of thin film nickel silicide was obtained by vacuum annealing at $600^{\circ}C$.

  • PDF