• Title/Summary/Keyword: Ni-based oxides

Search Result 65, Processing Time 0.028 seconds

Flow behavior characteristics according to superficial gas velocity of NiO/MoO3/MoS2 (NiO/MoO3/MoS2의 공탑속도에 따른 유동화 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Lee, Kwan-Young;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2017
  • This study identified the loss of minimum fluidization velocity and pressure in accordance with the superficial velocity of $NiO/MoO_3/MoS_2$, a rare metallic oxide and high value-added material in the lab-scale fluidized bed reactor (L=0.25 m, D=0.05 m). The average pressure loss in L/D 1, 2, and 3 of $NiO/MoO_3/MoS_2$ within the scope of superficial gas velocity between 0.07 and 0.45 m/s based on the L/D 1, 2, and 3 of the specimen was shown to be 290~1952 Pa at decreasing flux and 253~1925 Pa at increasing flux. The comparison between the theoretical value proposed by Wen and the test data showed a difference between 0.021~0.36 magnification. Based on these results, this study was able to determine the operation conditions where rare metallic oxides could be applied in real phenomena.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

Control of Charge Transports in Nonvolatile Resistive Memory Devices through Embedded Nanoscale Layers (나노 적층 구조를 응용한 저항성 기반 비휘발성 메모리 소자 특성 제어)

  • You, Yil-Hwan;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.336-343
    • /
    • 2009
  • Nickel oxide thin films exhibit the resistive switching as a function of applied voltages. The switching phenomena involve low and high resistance states after electroforming. The electrical features are believed to be associated with the formation and rupture of filaments. The set and reset behaviors are controlled by the oxidation and reduction of filaments. The indirect evidence of filaments is corroborated by the presence of nanocrystalline nickel oxides found in high-resolution transmission electron microscopy. The insertion of insulating layers seems to control the current-voltage characteristics by preventing the continuous formation of conductive filaments, potentially leading to artificial control of resistive behaviors in NiO-based systems.

1.5 kV GaN Schottky Barrier Diode for Next-Generation Power Switches (차세대 전력 스위치용 1.5 kV급 GaN 쇼트키 장벽 다이오드)

  • Ha, Min-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1646-1649
    • /
    • 2012
  • The $O_2$ annealing technique has considerably suppressed the leakage current of GaN power devices, but this forms NiO at Ni-based Schottky contact with increasing on-resistance. The purpose of the present study was to fabricate 1.5 kV GaN Schottky barrier diodes by improving $O_2$-annealing process and GaN buffer. The proposed $O_2$ annealing performed after alloying ohmic contacts in order to avoid NiO construction. The ohmic contact resistance ($R_C$) was degraded from 0.43 to $3.42{\Omega}-mm$ after $O_2$ annealing at $800^{\circ}C$. We can decrease RC by lowering temperature of $O_2$ annealing. The isolation resistance of test structure which indicated the surface and buffer leakage current was significantly increased from $2.43{\times}10^7$ to $1.32{\times}10^{13}{\Omega}$ due to $O_2$ annealing. The improvement of isolation resistance can be caused by formation of group-III oxides on the surface. The leakage current of GaN Schottky barrier diode was also suppressed from $2.38{\times}10^{-5}$ to $1.68{\times}10^{-7}$ A/mm at -100 V by $O_2$ annealing. The GaN Schottky barrier diodes achieved the high breakdown voltage of 700, 1400, and 1530 V at the anode-cathode distance of 5, 10, and $20{\mu}m$, respectively. The optimized $O_2$ annealing and $4{\mu}m$-thick C-doped GaN buffer obtained the high breakdown voltage at short drift length. The proposed $O_2$ annealing is suitable for next-generation GaN power switches due to the simple process and the low the leakage current.

Estimation of Pollution Degree of Surface Sediment from Incheon H Wharf (인천 H항 표층 퇴적물의 오염도 평가)

  • Kim, Jeong-Ho;Nam, Se-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.504-510
    • /
    • 2014
  • In this study, physico-chemical properties and pollution degree of surface sediments collected at 5 stations(S1~S5) of Incheon H wharf in March 2014 were investigated. From particle size, surface area, XRD and XRF analyses, the sediment samples consisted of similar oxides and minerals. Considering total score of COD, AVS and IL, pollution level ranged between 2 and 3 based on domestic standards. In case of heavy metal contamination, Cd, Ni and Pb were classified as moderately polluted by USEPA standards. However, Cu, Zn and Cr were classified as heavily polluted. With geoaccumulation index value($I_{geo}$), Cd contamination was estimated as class 3. In addition, the calculated enrichment factors of Cd, Pb and Zn were exceeded a value of 1. Site S4 was high as 3.1 in total enrichment factor.

A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization (스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구)

  • Min-Jun-Yi;Jin-Won-Bae;Su-Yeon-Park;Jae-Ik-Choi;Geon-Ho-Kim;Jong-Hyun-Seo
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.2
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications (복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구)

  • Younghee So;Eunseo Lee;Jinyoung Lee;Sungwook Mhin;Bin Lee;Hyung Tae Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.73-77
    • /
    • 2024
  • The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

Amperometric Electronic Tongue Based on Metal Oxide Containing Carbon Paste Electrode Array (금속 산화물을 포함한 탄소반죽 전극 어레이로 제작한 전자 혀)

  • Han Jong Ho;Kim Dong Sun;Kim Jong Sik;Yoon In Jun;Cha Geun Sig;Nam Hakhyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.206-210
    • /
    • 2004
  • All array of carbon paste-based electrodes was prepared by screen printing the carbon paste modified with metal oxides $(TiO_2,\;RuO_2,\;PbO_2,\;Ni(OH)_2)$ and Prussian blue (PB). An electronic tongue system was assembled with the carbon-paste electrode array, and applied to discriminate the tastes of various commercial beverages and foods by measuring the chronoamperometric responses to the samples diluted in 0.1M carbonate buffer (pH 9.6). The results were analyzed with principal component analysis(PCA) method and plotted on two dimensional PCA coordinate; it was apparent that the amperometric electronic tongue system could discriminate the types of various foods and beverages.

Microwave Annealing in Ag/HfO2/Pt Structured ReRAM Device

  • Kim, Jang-Han;Kim, Hong-Ki;Jang, Ki-Hyun;Bae, Tae-Eon;Cho, Won-Ju;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.373-373
    • /
    • 2014
  • Resistive-change random access memory (ReRAM) device is one of the promising candidates owing to its simple structure, high scalability potential and low power operation. Many resistive switching devices using transition metal oxides materials such as NiO, Al2O3, ZnO, HfO2, $TiO_2$, have attracting increased attention in recent years as the next-generation nonvolatile memory. Among various transition metal oxides materials, HfO2 has been adopted as the gate dielectric in advanced Si devices. For this reason, it is advantageous to develop an HfO2-based ReRAM devices to leverage its compatibility with Si. However, the annealing temperature of these high-k thin films for a suitable resistive memory switching is high, so there are several reports for low temperature process including microwave irradiation. In this paper, we demonstrate the bipolar resistive switching characteristics in the microwave irradiation annealing processed Ag/HfO2/Pt ReRAM device. Compared to the as-deposited Ag/HfO2/Pt device, highly improved uniformity of resistance values and operating voltage were obtained from the micro wave annealing processed HfO2 ReRAM device. In addition, a stable DC endurance (>100 cycles) and a high data retention (>104 sec) were achieved.

  • PDF

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.