DOI QR코드

DOI QR Code

Sintering behavior and electrical properties of transition metal (Ni, Co, Mn) based spinel oxides for temperature sensor applications

복합전이금속(Ni, Co, Mn) 기반 스피넬계 산화물의 소결 거동 및 온도센서 특성 연구

  • Younghee So (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Eunseo Lee (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Jinyoung Lee (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Sungwook Mhin (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Bin Lee (Advanced Materials Engineering for Information & Electronics, Kyung Hee University) ;
  • Hyung Tae Kim (KOCERA)
  • 소영희 (경기대학교 신소재공학과) ;
  • 이은서 (경기대학교 신소재공학과) ;
  • 이진영 (경기대학교 신소재공학과) ;
  • 민성욱 (경기대학교 신소재공학과) ;
  • 이빈 (경희대학교 정보전자신소재공학과) ;
  • 김형태 (한국세라믹연합회)
  • Received : 2024.02.16
  • Accepted : 2024.04.03
  • Published : 2024.04.30

Abstract

The spinel-type oxide (Nix, Mny, Co3-x-y)O4 (NMC) is widely utilized as a material for temperature sensors with a negative temperature coefficient (NTC), finding applications across various industries including electric vehicle battery management systems. Typically, NMC is manufactured using solid-state reaction methods employing powders of Ni, Mn, and Co compounds, with the densification process through sintering recognized as a crucial factor determining the electrical properties of the temperature sensor material. In this study, NMC pellets were synthesized via solid-state reaction and their crystallographic and microstructural characteristics were investigated. Also, the activation energy for densification behavior during the sintering process was determined. According to the analysis results, the room temperature resistance of the NMC pellets was measured at 10.03 Kohm, with the sensitivity parameter, B-value, recorded at 3601.8 K, indicating their potential applicability as temperature sensors across various industrial fields. Furthermore, the activation energy for densification was found to be 273.3 ± 0.4 kJ/mol, providing valuable insights into the thermodynamic aspects of the sintering process of the NMC.

스피넬계 산화물 중 (Nix, Mny, Co3-x-y)O4(NMC)는 부온도계수 온도센서 소재로 활용되어 전기자동차용 배터리 관리 시스템을 포함한 다양한 산업적 응용이 가능하다. 일반적으로 NMC는 Ni, Mn, Co 화합물 분말을 이용하여 고상반응법을 통해 제조되는데 이 중 소결 공정을 통한 치밀화 과정이 온도센서 소재의 온도에 따른 전기적 특성을 결정하는 중요한 인자로 알려져 있다. 본 연구에서는 NMC 펠렛을 고상반응법을 통해 제조하고 결정구조 및 미세구조를 관찰하였다. 또한, 소결 과정 동안의 치밀화 거동 분석을 위한 활성화 에너지를 도출하였다. 분석 결과에 따르면, NMC 펠렛의 상온 저항은 10.03 Kohm이었으며 센서민 감도인 B-value는 3601.8 K로 다양한 산업군에 온도센서로 적용이 가능할 것으로 기대된다. 또한, 치밀화를 위한 활성화 에너지는 273.3 ± 0.4kJ/mol로 도출되었으며, 이는 소결 과정의 열역학적 특성을 이해하는데 중요한 정보를 제공할 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2024년 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. S. Fritsch, J. Sarrias, M. Brieu, J.J. Coudere, J.L. Baudour, E. Snoeck and A. Rousset, "Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors", Solid State Ionics 109 (1998) 229.
  2. L.H. Omari, L. Hajji, M. Haddad, T. Lamhasni and C. Jama, "Synthesis, structural, optical and electrical properties of La-modified Lead Iron Titanate ceramics for NTCR thermo-resistance based sensors", Mater. Chem. Phys. 223 (2019) 60.
  3. F. Guan, X.J. Lin, H. Dai, J.R. Wang, X. Cheng and S.F. Huang, "LaMn1-xTixO3-NiMn2O4 (0 ≤ x ≤ 0.7): A composite NTC ceramic with controllable electrical property and high stability", J. Eur. Ceram. Soc. 39 (2019) 2692.
  4. M. Vakiv, O. Shpotyuk, O. Mrooz and I. Hadzaman, "Controlled thermistor effect in the system CuxNi1-x-yCo2yMn2-yO4", J. Eur. Ceram. Soc. 21 (2001) 1783.
  5. R. Schmidt, A. Basu and A.W. Brinkman, "Small polaron hopping in spinel manganates", Phys. Rev. B 72 (2005) 115101.
  6. L.G. Austin and N.F. Mott, "Polarons in crystalline and non-crystalline materials", Adv. Phys. 18 (1969) 41.
  7. J. Wu, Z. Huang, Y. Hou, Y. Gao and J. Chu, "Variation in hopping conduction across the magnetic transition in spinel Mn1.56Co0.96Ni0.48O4 Films", Appl. Phys. Lett. 96 (2010) 082103.
  8. C. Zhao and Y. Zhao, "The investigation of Zn content on the structure and electrical properties of ZnxCu0.2Ni0.66Mn2.14-xO4 negative temperature coefficient ceramics", J. Mater. Sci. Mater. Electron. 23 (2012) 1788.
  9. C.C. Wang, S.A. Akbar and M.J. Madou, "Ceramic Based Resistive Sensors", J. Electroceram. 2(4) (1998) 273.
  10. A. Feteira. "Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective", J. Am. Ceram. Soc. 92 (2009) 967.
  11. H. Bordeneuve, S. Guillemet-ritsch, A. Rousset, S. Schuurman and V. Poulain, "Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3xCoxO4 sintered classically and by spark plasma sintering (SPS)", J. Solid State Chem. 182 (2009) 396.
  12. M.W. Khalid, Y.I. Kim, M.A. Haq, D. Lee, B.S. Kim and B. Lee, "Microwave hybrid sintering of Al2O3 and Al2O3-ZrO2 composites, and effects of ZrO2 crystal structure on mechanical properties, thermal properties, and sintering kinetics", Ceram. Int. 46 (2020) 9002.
  13. M.N. Rahaman, "Sintering of ceramics", first ed. (CRC Press, Boca Raton, 2007), p. 22.
  14. R.R. Thridandapani, D.C. Folz and D.E. Clark, "Estimation of activation energies for sintering 8 mol % YttriaZirconia using conventional and microwave heating", Int. J. Appl. Ceram. Technol. 11 (2014) 938.
  15. V. Pouchly, K. Maca and Z. Shen, "Two-stage master sintering curve applied to two-step sintering of oxide ceramics", J. Eur. Ceram. Soc. 33 (2013) 2275.
  16. H. Han, K.R. Park, Y.R. Hong, K. Shim and S. Mhin, "Effect of Fe incorporation on cation distributions and hopping conductions in Ni-Mn-Co-O spinel oxides", J. Alloys Compd. 732 (2018) 486.
  17. S. Mhin, H. Han, D. Kim, S. Yeo, J.I. Lee and J.H. Ryu, "Phase evolution of (Ni, Co, Mn) O4 during heat treatment with high temperature in situ X-ray diffraction", Ceram. Int. 42 (2016) 5412.
  18. H. Han, H. Lee, J. Lim, K.M. Kim, Y.R. Hong, J. Lee, J. Forrester, J.H. Ryu and S. Mhin, "Hopping conduction in (Ni, Co, Mn) O4 prepared by different synthetic routes: Conventional and spark plasma sintering", Ceram. Int. 43 (2017) 16070.