• Title/Summary/Keyword: Ni oxide

Search Result 931, Processing Time 0.029 seconds

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Fabrication of LaySr1-yFexTi1-xO3-based Nanocomposite Solid Oxide Fuel Cell Anodes by Infiltration (Infiltration법을 이용한 LaySr1-yFexTi1-xO3계 나노복합 연료극 제조)

  • Yoon, Jong-Seol;Choe, Yeong-Ju;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Nano-sized gadolinium-doped ceria (GDC)/nickel particle-dispersed $La_ySr_{1-y}Ti_{1-x}Fe_xO_3$ (LSFTO)-based composite solid oxide fuel cell anodes were fabricated by an infiltration method and the effects of the GDC/Ni nanoparticles on the anode polarization resistance and cell performance were investigated in terms of the infiltration time and nickel content. The anodic polarization resistance of the LSFTO anode was significantly enhanced by GDC and/or Ni infiltration and it decreased with increasing infiltration time and Ni content, respectively. It is believed that the observed phenomena are associated with enhancement of the ionic conductivity and catalytic activity in the nanocomposite anodes by the addition of GDC and Ni. Power densities of cells with the LSFTO and LSFTO-GDC/Ni nanocomposite anodes were 150 and $300mW/cm^2$ at $800^{\circ}C$, respectively.

Observation of the Castability and Bonding Strength of a Co-Cr alloy for Porcelain Fused to Metal Crown (도재용착주조관용 Co-Cr합금의 주조성 및 결합강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young;Kim, Kap-Jin
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • Purpose: This study was to analyze the castability, surface oxide characteristic of Co-Cr alloy for porcelain fused to metal crown and the bonding strength of porcelain fused to metal crown. Co-Cr and Ni-Cr alloy for porcelain fused to metal crown was used for tests of the castability and surface oxide state and shear bonding strength by various porcelain. The aim of this study was to suggest the differences of result according to Co-Cr and Ni-Cr alloy. Methods: The kinds of alloy as test specimen was Co-Cr and Ni-Cr alloy. The castability index on the alloy specimens. The surfaces of two alloys were analyzed by SEM and EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The castability index of Co-Cr alloy was 96.8% and Ni-Cr alloy was 94.4%. The strongest bonding strength of Co-Cr alloy was shown 67.37 MPa. Conclusion: The shear bonding strength between Co-Cr alloy and EX3 porcelain was the strongest comparing with others. And all of each alloy was indicated as same level about the castability.

Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate (스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절)

  • JI, SANGHOON;JANG, CHOON-MAN;JUNG, WOOCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.434-441
    • /
    • 2018
  • The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

Simultaneous Voltammetric Determination of Mefenamic Acid and Paracetamol using Graphene Nanosheets/Nickel Oxide Nanoparticles Modified Carbon Paste Electrode

  • Naeemy, Ali;Gholam-Shahbazi, Rozhina;Mohammadi, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.282-293
    • /
    • 2017
  • A new modified carbon paste electrode (CPE) was constructed based on nickel oxide nanoparticles (NiONPs) and graphene nanosheets (Gr) for simultaneous determination of paracetamol (PCM) and mefenamic acid (MFA) in aqueous media and pharmaceutical dosage forms. NiONPs were synthesized via a simple and inexpensive technique and characterized using X-ray diffraction method. Scanning electron microscopy was used for the characterization of the morphology of modified carbon paste electrode (NiONPs/Gr/CPE). Voltammetric studies suggest that the NiONPs and Gr provide a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the NiONPs/Gr/CPE surface. Using cyclic voltammetry, the NiONPs/Gr/CPE showed good sensitivity and selectivity for the determination of PCM and MFA in individually or mixture standard samples in the linear range of $0.1-30{\mu}g\;mL^{-1}$. The resulted limit of detection and limit of quantification were 20 and $60ng\;mL^{-1}$ for PCM, 24 and $72ng\;mL^{-1}$ for MFA, respectively. The analytical performance of the NiONPs/Gr/CPE was evaluated for the determination of PCM and MFA in pharmaceutical dosage forms with satisfactory results.

Chromium Poisoning of Neodymium Nickelate (Nd2NiO4) Cathodes for Solid Oxide Fuel Cells

  • Lee, Kyoung Jin;Chung, Jae Hun;Lee, Min Jin;Hwang, Hae Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, we investigated the long-term stability of Nd2NiO4 solid oxide fuel cell (SOFC) cathodes to evaluate their chromium poisoning tolerance. Symmetrical cells consisting of Nd2NiO4 electrodes and a yttria-stabilized zirconia electrolyte were fabricated and the cell potential and polarization resistance were measured at 850 ℃ in the presence of gaseous chromium species for 800 h. Up to 500 h of operation, the cell potential remained constant at 500 mA/㎠. However, it increased slightly over the operation duration of 550-800 h. No appreciable increase was observed in the polarization resistance of the Nd2NiO4 cathode during the entire operation of 800 h. Physicochemical examinations revealed that the gaseous chromium species did not form chromium-related contamination not only in the Nd2NiO4 cathode but also at the cathode/electrolyte interface. The results demonstrated that Nd2NiO4 is resistant to chromium poisoning, and hence is a potential alternative to standard perovskite cathodes.

Structure of Ni and NiO Nanoparticles Observed by X-ray Coherent Diffraction Imaging

  • Kim, Chan;Kim, Yoon-Hee;Hamh, Sun-Young;Son, Jun-Gon;Khakurel, Krishna Prasad;Iqbal, Mazhar;Noh, Do-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.542-543
    • /
    • 2012
  • Coherent diffraction imaging (CDI) method using hard x-ray at 5.46 keV was applied to study assembly of Ni and Ni oxide nano structures formed on a Si3N4 membrane. Density distribution of Ni nano-particles was obtained quantitatively with about 15 nm lateral resolution by reconstructing images from the speckle diffraction pattern. In addition, reconstructed images of nickel oxide particles indicated that Ni atoms diffuse out during the oxidation process leaving pores inside the nickel oxide crust. Furthermore, we recognize that really weak phase object, less than 5 nm thickness of Ni residues, can be reconstructed due to the reference particles. We achieved quantitative information of nanometer sized materials and demonstrate the effect of reference particles by using hard x-ray coherent diffractive imaging method.

  • PDF

Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes

  • Kim, Jeonghyun;Park, Soo-Jin;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2019
  • Petal-like nickel cobaltite ($NiCo_2O_4$)/reduced graphene oxide (rGO) composites with different $rGO-to-NiCo_2O_4$ weight ratios were synthesized using a simple hydrothermal method and subsequent thermal treatment. In the $NiCo_2O_4/rGO$ composite, the $NiCo_2O_4$ 3-dimensional nanomaterials contributed to the improvement of electrochemical properties of the final composite material by preventing the restacking of the rGO sheet and securing ion movement passages. The composite structure was examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The FE-SEM and TEM images showed that petal-like $NiCo_2O_4$ was supported on the rGO surface. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were used for the electrochemical analysis of composites. Among the prepared composites, $0.075g\;rGO/NiCo_2O_4$ composite showed the highest specific capacitance of $1,755Fg^{-1}$ at a current density of $2Ag^{-1}$. The cycle performance and rate capability of the composite material were higher than those of using the single $NiCo_2O_4$ material. These nano-structured composites could be regarded as valuable electrode materials for supercapacitors that require superior performance.