DOI QR코드

DOI QR Code

Simultaneous Voltammetric Determination of Mefenamic Acid and Paracetamol using Graphene Nanosheets/Nickel Oxide Nanoparticles Modified Carbon Paste Electrode

  • Naeemy, Ali (Pharmaceutical Quality Assurance Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences) ;
  • Gholam-Shahbazi, Rozhina (Pharmaceutical Quality Assurance Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences) ;
  • Mohammadi, Ali (Pharmaceutical Quality Assurance Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences)
  • Received : 2017.04.30
  • Accepted : 2017.09.23
  • Published : 2017.12.31

Abstract

A new modified carbon paste electrode (CPE) was constructed based on nickel oxide nanoparticles (NiONPs) and graphene nanosheets (Gr) for simultaneous determination of paracetamol (PCM) and mefenamic acid (MFA) in aqueous media and pharmaceutical dosage forms. NiONPs were synthesized via a simple and inexpensive technique and characterized using X-ray diffraction method. Scanning electron microscopy was used for the characterization of the morphology of modified carbon paste electrode (NiONPs/Gr/CPE). Voltammetric studies suggest that the NiONPs and Gr provide a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the NiONPs/Gr/CPE surface. Using cyclic voltammetry, the NiONPs/Gr/CPE showed good sensitivity and selectivity for the determination of PCM and MFA in individually or mixture standard samples in the linear range of $0.1-30{\mu}g\;mL^{-1}$. The resulted limit of detection and limit of quantification were 20 and $60ng\;mL^{-1}$ for PCM, 24 and $72ng\;mL^{-1}$ for MFA, respectively. The analytical performance of the NiONPs/Gr/CPE was evaluated for the determination of PCM and MFA in pharmaceutical dosage forms with satisfactory results.

Keywords

References

  1. M.J. O'Neil, The Merck index: an encyclopedia of chemicals, drugs, and biologicals, RSC Publishing, 2013.
  2. A. Brayfield, Martindale: the complete drug reference, 38 ed., Pharmaceutical Press, USA, 2014.
  3. J.P. Remington, D.B. Troy and P. Beringer, Remington: The science and practice of pharmacy, Pharmaceutical Press, United Kingdom, 2012.
  4. E. Dinc, C. Yucesoy and F. Onur, J. Pharm. Biomed. Anal., 2002, 28(6), 1091-1100. https://doi.org/10.1016/S0731-7085(02)00031-6
  5. S. Das, S.C. Sharma, S.K. Talwar and P. Sethi, Analyst, 1989, 114(1), 101-103. https://doi.org/10.1039/an9891400101
  6. M.I. Toral, P. Richter, E. Araya and S. Fuentes, Anal. Lett., 1996, 29(15), 2679-2689. https://doi.org/10.1080/00032719608002272
  7. P. Parimoo, A. Bharathi and K. Padma, Indian Drugs, 1996, 33(6), 290-292.
  8. A. Dhake, D. Sonaje, V. Kasture, P. Nikam and R. Talekar, Indian J. Pharm. Sci., 2001, 63, 55-57.
  9. A.M. Karnik, V.P. Choudhari, S. Sharma, S. Murkute and V. Patole, J Pharm Res Clin Pract, 2012, 2(2), 43-48.
  10. S. Husain, M. Kifayatullah and R. Sekar, Indian J. Chem. Technol., 2001, 8, 191-194.
  11. T. Madrakian, A. Afkhami and M. Mohammadnejad, Anal. Chim. Acta, 2009, 645(1), 25-29. https://doi.org/10.1016/j.aca.2009.05.002
  12. S. Lokhande, S. Mhetre, S. Pekamwar and T. Kalyankar, World Journal of Pharmacy and Pharmaceutical Sciences, 2012, 1, 968-980.
  13. M.A. Badgujar and K. Mangaonkar, J. Chem. Pharm. Res, 2011, 3(4), 893-898.
  14. A. Argekar and J. Sawant, JPC. Journal of planar chromatography, modern TLC, 1999, 12(5), 361-364.
  15. A.B. Moghaddam, A. Mohammadi, S. Mohammadi, D. Rayeji, R. Dinarvand, M. Baghi and R.B. Walker, Microchim. Acta, 2010, 171(3-4), 377-384. https://doi.org/10.1007/s00604-010-0445-7
  16. F. Ghorbani-Bidkorbeh, S. Shahrokhian, A. Mohammadi and R. Dinarvand, J. Electroanal. Chem., 2010, 638(2), 212-217. https://doi.org/10.1016/j.jelechem.2009.11.012
  17. R. Westervelt, Science, 2008, 320(5874), 324-325. https://doi.org/10.1126/science.1156936
  18. S. Benitez-Martinez, A.I. Lopez-Lorente and M. Valcarcel, Microchem. J., 2015, 121, 6-13. https://doi.org/10.1016/j.microc.2015.01.006
  19. J. Mo, L. Zhou, X. Li, Q. Li, L. Wang and Z. Wang, Microchem. J., 2017, 130, 353-359. https://doi.org/10.1016/j.microc.2016.10.008
  20. J. Wang, Electroanalysis, 2005, 17(1), 7-14. https://doi.org/10.1002/elan.200403113
  21. K.C.M.S. Lima, A.C.F. Santos, R.N. Fernandes, F.S. Damos and R.d.C.S. Luz, Microchem. J., 2016, 128, 226-234. https://doi.org/10.1016/j.microc.2016.04.024
  22. S.-J. Li, J.-Z. He, M.-J. Zhang, R.-X. Zhang, X.-L. Lv, S.-H. Li and H. Pang, Electrochim. Acta, 2013, 102, 58-65. https://doi.org/10.1016/j.electacta.2013.03.176
  23. G.-T. Liu, H.-F. Chen, G.-M. Lin, P.-p. Ye, X.-P. Wang, Y.-Z. Jiao, X.-Y. Guo, Y. Wen and H.-F. Yang, Biosens. Bioelectron., 2014, 56, 26-32. https://doi.org/10.1016/j.bios.2014.01.005
  24. Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura and P.V. Kamat, The Journal of Physical Chemistry Letters, 2010, 1(15), 2222-2227. https://doi.org/10.1021/jz100728z
  25. A. Mohammadi, A.B. Moghaddam and J. Badraghi, Anal. Methods, 2012, 4(4), 1024-1028. https://doi.org/10.1039/c2ay05596a
  26. A. Mohammadi, A.B. Moghaddam, M. Kazemzad, R. Dinarvand and J. Badraghi, Materials Science and Engineering: C, 2009, 29(5), 1752-1758. https://doi.org/10.1016/j.msec.2009.01.029
  27. D. Gosser, VCH, New York, 1994,
  28. J.B. Allen and R.F. Larry, Electrochemical methods: fundamentals and applications, John Wiley & Sons, Inc, New York, United States, 2001.
  29. A. Patterson, Phys. Rev., 1939, 56(10), 978. https://doi.org/10.1103/PhysRev.56.978
  30. H.P. Klug and L.E. Alexander, X-ray diffraction procedures, John Wiley and Sons, New York, United States, 1988.
  31. F. Hahn, B. Beden, M. Croissant and C. Lamy, Electrochim. Acta, 1986, 31(3), 335-342. https://doi.org/10.1016/0013-4686(86)80087-1
  32. P. Parpot, S. Pires and A. Bettencourt, J. Electroanal. Chem., 2004, 566(2), 401-408. https://doi.org/10.1016/j.jelechem.2003.11.053
  33. S. Maximovitch and G. Bronoel, Electrochim. Acta, 1981, 26(9), 1331-1338. https://doi.org/10.1016/0013-4686(81)85118-3
  34. Y. Zhang, Y. Wang, J. Jia and J. Wang, Sensors and Actuators B: Chemical, 2012, 171, 580-587.
  35. A. Feizbakhsh, A. Aghassi, A. Ehsani, M.A. Jamaat, A. Naeemy and I. Danaee, J. Chin. Chem. Soc., 2012, 59(9), 1086-1093. https://doi.org/10.1002/jccs.201100570
  36. I. Casella, E. Desimoni and T. Cataldi, Anal. Chim. Acta, 1991, 248(1), 117-125. https://doi.org/10.1016/S0003-2670(00)80876-4
  37. M. Fleischmann, K. Korinek and D. Pletcher, J. Electroanal. Chem. 1971, 31(1), 39-49. https://doi.org/10.1016/S0022-0728(71)80040-2
  38. J. Losada, I. Del Peso and L. Beyer, J. Electroanal. Chem., 1998, 447(1), 147-154. https://doi.org/10.1016/S0022-0728(97)00608-6
  39. ICH, Validation of analytical procedures: text and methodology (Q2R1), International Conference on Harmonization, Geneva: IFPMA, 2005.
  40. A. Babaei, M. Afrasiabi and M. Babazadeh, Electroanalysis, 2010, 22(15), 1743-1749. https://doi.org/10.1002/elan.200900578
  41. B. Khalilzadeh, A. Babaei and M. Afrasiabi, J. Appl. Electrochem., 2010, 40(8), 1537-1543. https://doi.org/10.1007/s10800-010-0131-9
  42. A. Asghari, S. Kianipour, M. Afrasiabi and M. Rajabi, Sensor Letters, 2013, 11(3), 545-551. https://doi.org/10.1166/sl.2013.2825
  43. S. Kianipour and A. Asghari, Sensors Journal, IEEE, 2013, 13(7), 2690-2698. https://doi.org/10.1109/JSEN.2013.2259588