Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.10.811

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness  

Choi, Gyu-Chae (Nano Functional Powder Research Group, Korea Institute of Materials Science)
Chung, Kook-Chae (Nano Functional Powder Research Group, Korea Institute of Materials Science)
Kim, Young-Kuk (Nano Functional Powder Research Group, Korea Institute of Materials Science)
Cho, Young-Sang (Nano Functional Powder Research Group, Korea Institute of Materials Science)
Choi, Chul-Jin (Nano Functional Powder Research Group, Korea Institute of Materials Science)
Kim, Yang-Do (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.10, 2011 , pp. 811-817 More about this Journal
Abstract
In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.
Keywords
thin films; deposition; electrical properties; AFM; NiO;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).   DOI   ScienceOn
2 S. Schols, S. VERLAAK, C. Rolin, D. Cheyns, J. Genoe, P. Heremans, Adv. Funct. Mater. 18, 136 (2008).   DOI   ScienceOn
3 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friedn, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990).   DOI
4 J. Kido, K. Nagai, and Y. Okamoto, IEEE Trans. Electron Devices 40, 1342 (1993).   DOI   ScienceOn
5 S. L. Lai, M. Y. CHan, M. K. Fung, C. S. Lee, L. S. Hung, and S. T. Lee, Chem. Phys. Lett. 366, 128 (2002).   DOI   ScienceOn
6 M. Pope, H. kallmane, and P. Magnate, J. Chem. Phys. 38, 2042 (1963).   DOI
7 C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).   DOI
8 S. Y. Kim, K. Y. Hong, K. S. Kim, H. K. Yu, W. K. Kim, and J. L. Lee, J. Appl. Phys. Lett. 103, 076101 (2008).
9 S. Y. Kim, K. B. Kim, Y. H. Tak, and J. L. Lee, J. Appl. Phys. Lett. 95, 2560 (2004).
10 D. Guo, S. Entani, S. Ikeda, and K. Saiki, Chem. Phys. Lett. 429, 124 (2004).
11 S. Y. Kim, K. Hong, and J. L. Lee, Appl. Phys. Lett. 90, 183508 (2007).   DOI   ScienceOn
12 J. Ma, X. Y. Jiang, Z, Liang, J. Cao, X. Zhang, and Z. L. Zhang, Semicond. Sci, Technol. 24, 6 (2009).
13 Z. Z. You and J. Y. Dong, Appl, Surf. Sci. 249, 271 (2005).   DOI   ScienceOn
14 B. S. Kim, D. E. Kim, Y. K. Jang, N. S. Lee, O. K. Kwon, and Y. S. Kwon, Korean Phys. Soc. 50, 1858 (2007).   DOI   ScienceOn
15 J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, Nano, Lett. 6, 2991 (2006).   DOI   ScienceOn
16 K. C. Chung, Y. K. Kim, and C. J. Choi, Kor. J. Met. Mater. 48, 320 (2010).   DOI   ScienceOn
17 J. Y. Lee, Appl. Phys. Lett. 88, 73512 (2002).
18 K. kato et al., Current Appl. Phys. 5, 321 (2005).   DOI   ScienceOn
19 J. A. Thornton, An. Rev. Mater. Sci. 7, 239 (1977)   DOI   ScienceOn
20 I. M. Chan, T. Y. Hong, and F. C. Hong, Appl. Phys. Lett. 81, 1899 (2002).   DOI   ScienceOn