DOI QR코드

DOI QR Code

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Received : 2011.10.19
  • Accepted : 2011.12.06
  • Published : 2012.02.20

Abstract

Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Keywords

References

  1. Xie, X.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. Nature 2009, 458, 746. https://doi.org/10.1038/nature07877
  2. Liotta, L. F.; Deganello, G.; Di Carlo, G.; Pantaleo, G.; Venezia, A. M. Curr. Top. Catal. 2008, 7, 77.
  3. Wang, W.; Li, Y.; Zhang, R.; He, D.; Liu, H.; Liao, S. Catal. Commun. 2011, 12(10), 875. https://doi.org/10.1016/j.catcom.2011.02.001
  4. Xu, C.-X.; Liu, Y.-Q.; Zhou, C.; Wang, L.; Geng, H.-R.; Ding, Y. ChemCatChem 2011, 3(2), 399. https://doi.org/10.1002/cctc.201000275
  5. Zheng, J.; Chu, W.; Zhang, H.; Jiang, C.; Dai, X. J. Nat. Gas Chem. 2010, 19(6), 583. https://doi.org/10.1016/S1003-9953(09)60119-5
  6. Sun, S.; Gao, Q.; Wang, H.; Zhu, J.; Guo, H. Appl. Catal. B 2010, 97(1-2), 284. https://doi.org/10.1016/j.apcatb.2010.04.016
  7. Hu, L.; Peng, Q.; Li, Y. J. Am. Chem. Soc. 2008, 130(48), 16136. https://doi.org/10.1021/ja806400e
  8. Li, H.; Fei, G. T.; Fang, M.; Cui, P.; Guo, X.; Yan, P.; Zhang, L. D. Appl. Surf. Sci. 2011, 257(15), 6527. https://doi.org/10.1016/j.apsusc.2011.02.066
  9. Gui, Z.; Zhu, J.; Hu, Y. Mater. Chem. Phys. 2010, 124(1), 243. https://doi.org/10.1016/j.matchemphys.2010.06.025
  10. Askarinejad, A.; Bagherzadeh, M.; Morsali, A. Appl. Surf. Sci. 2010, 256(22), 6678. https://doi.org/10.1016/j.apsusc.2010.04.069
  11. Nguyen, H.; El-Safty, S. A. J. Phys. Chem. C 2011, 115(17), 8466. https://doi.org/10.1021/jp1116189
  12. Na, C. W.; Woo, H.-S.; Kim, I.-D.; Lee, J.-H. Chem. Commun. 2011, 47(18), 5148. https://doi.org/10.1039/c0cc05256f
  13. Christy, M.; Jisha, M. R.; Kim, A. R.; Nahm, K. S.; Yoo, D. J.; Suh, E. K.; Kumari, T. S. D.; Kumar, T. P.; Stephan, A. M. Bull. Korean Chem. Soc. 2011, 32, 1204. https://doi.org/10.5012/bkcs.2011.32.4.1204
  14. Jia, W.; Guo, M.; Zheng, Z.; Yu, T.; Rodriguez, E. G.; Wang, Y.; Lei, Y. J. Electroanal. Chem. 2009, 625(1), 27. https://doi.org/10.1016/j.jelechem.2008.09.020
  15. Xue, X.-Y.; Yuan, S.; Xing, L.-L.; Chen, Z.-H.; He, B.; Chen, Y. - J. Chem. Commun. 2011, 47, 4718. https://doi.org/10.1039/c1cc10462d
  16. Wu, Z. S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187. https://doi.org/10.1021/nn100740x
  17. Guo, B.; Li, C.; Yuan, Z.-Y. J. Phys. Chem. C 2010, 114(29), 12805. https://doi.org/10.1021/jp103705q
  18. Wang, X.; Wu, X.-L.; Guo, Y.-G.; Zhong, Y.; Cao, X.; Ma, Y.; Yao, J. Adv. Funct. Mater. 2010, 20(10), 1680. https://doi.org/10.1002/adfm.200902295
  19. Jiao, F.; Frei, H. Angew. Chem. 2009, 121, 1873. https://doi.org/10.1002/ange.200805534
  20. Park, J. P.; Park, J. Y.; Hwang, C. H.; Choi, M.-H.; Ok, K. M.Shim, I.-W. Bull. Korean Chem. Soc. 2010, 31, 2327.
  21. Frei, H. Chimia 2009, 63(11), 721. https://doi.org/10.2533/chimia.2009.721
  22. Risch, M.; Khare, V.; Zaharieva, I.; Gerencser, L.; Chernev, P.; Dau, H. J. Am. Chem. Soc. 2009, 131(20), 6936. https://doi.org/10.1021/ja902121f
  23. Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahnidl, H. Chem. Eur. J. 2010, 16(36), 11020. https://doi.org/10.1002/chem.201000562
  24. Li, C. C.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Chem. Mater. 2009, 21(20), 4984. https://doi.org/10.1021/cm902126w
  25. Ma, C. Y.; Mu, Z.; Li, J. J.; Jin, Y. G.; Cheng, J.; Lu, G. Q.; Hao, Z. P.; Qiao, S. Z. J. Am. Chem. Soc. 2010, 132(8), 2608. https://doi.org/10.1021/ja906274t
  26. Zeng, R.; Wang, J.-Q.; Chen, Z.-X.; Li, W.-X.; Dou, S.-X. J. Appl. Phys. 2011, 9(7), 07B520/1.
  27. Cao, F.; Wang, D.; Deng, R.; Tang, J.; Song, S.; Lei, Y.; Wang, S.; Su, S.; Yang, X.; Zhang, H. CrystEngComm 2011, 13(6), 2123. https://doi.org/10.1039/c0ce00392a
  28. Xu, C.; Sun, J.; Gao, L. CrystEngComm 2011, 13(5), 1586. https://doi.org/10.1039/c0ce00311e
  29. Liang, H.; Raitano, J. M.; Zhang, L.; Chan, S.-W. Chem. Commun. 2009, 48, 7569.
  30. Cui, L.; Li, J.; Zhang, X.-G. J. Appl. Electrochem. 2009, 39(10), 1871. https://doi.org/10.1007/s10800-009-9891-5
  31. Yang, J.; Sasaki, T. Cryst. Growth Des. 2010, 10(3), 1233. https://doi.org/10.1021/cg9012284
  32. Feng, J.; Zeng, H. C. Chem. Mater. 2003, 15, 2829. https://doi.org/10.1021/cm020940d
  33. Langford, J. I.; Wilson, A. J. C. J. Appl. Cryst. 1978, 11, 102. https://doi.org/10.1107/S0021889878012844
  34. Wang, C.-B.; Lin, H.-K.; Tang, C.-W. Catal. Lett. 2004, 1-2, 69.
  35. Gupta, R. K.; Sinha, A. K.; Raja Sekhar, B. N.; Srivastava, A. K.; Singh, G.; Deb, S. K. Appl. Phys. A 2011, 103, 13. https://doi.org/10.1007/s00339-011-6311-6
  36. He, T.; Chen, D.; Jiao, X.; Wang, Y.; Duan, Y. Chem. Mater. 2005, 17, 4023. https://doi.org/10.1021/cm050727s
  37. Xu, R.; Zeng, H. C. Langmuir 2004, 20, 9780. https://doi.org/10.1021/la049164+
  38. Zhang, Y. B.; Srirharan, T.; Li, S. Phys. Rev. B 2006, 73, 172404. https://doi.org/10.1103/PhysRevB.73.172404
  39. Gallant, D.; Pezolet, M.; Simard, S. J. Phys. Chem. B 2006, 110, 6871. https://doi.org/10.1021/jp056689h
  40. Hadjievl, V. G.; Ilievl, M. N.; Vergilovs, I. V. J. Phys. C: Solid State Phys. 1988, 21, Ll99-L201.
  41. Boucharda, M.; Gambardellab, A. J. Raman Spectrosc. 2010, 41, 1477. https://doi.org/10.1002/jrs.2645
  42. Xu, C.; Liu, Y.; Xu, G.; Wang, G. Chem. Phys. Lett. 2002, 366, 567. https://doi.org/10.1016/S0009-2614(02)01640-8
  43. Sohn, Y. Appl. Suf. Sci. 2010, 257, 1692. https://doi.org/10.1016/j.apsusc.2010.08.124
  44. Petitto, S. C.; Langell, M. A. J. Vac. Sci. Technol. A 2004, 22, 1690. https://doi.org/10.1116/1.1763899
  45. Barreca, D.; Gasparotto, A.; Lebedev, O. I.; Maccato, C.; Pozza, A.; Tondello, E.; Turner, S.; Tendeloo, G. V. CrystEngComm 2010, 12, 2185. https://doi.org/10.1039/b926368n
  46. Yang, J.; Hyodo, H.; Kimura, K.; Sasaki, T. Nanotech. 2010, 21, 045605. https://doi.org/10.1088/0957-4484/21/4/045605
  47. Li, Y.; Hasin, P.; Wu, Y. Adv. Mater. 2010, 22, 1926. https://doi.org/10.1002/adma.200903896

Cited by

  1. A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries vol.18, pp.37, 2016, https://doi.org/10.1039/C6CP04097G
  2. Thermolysis Synthesis of Pure Phase Nano-Sized Cobalt(II) Oxide from Novel Cobalt(II)-Pyrazole Discrete Nano Coordination Compound vol.26, pp.2, 2016, https://doi.org/10.1007/s10904-016-0326-6
  3. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content vol.6, pp.3, 2016, https://doi.org/10.3390/met6030046
  4. One for all: cobalt-containing polymethacrylates for magnetic ceramics, block copolymerization, unexpected electrochemistry, and stimuli-responsiveness vol.7, pp.5, 2016, https://doi.org/10.1039/C5PY01845E
  5. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries vol.5, pp.29, 2017, https://doi.org/10.1039/C7TA03939E
  6. Structure Effects on Activity of Plasma Deposited Cobalt Oxide Catalysts for VOC Combustion vol.60, pp.3-5, 2017, https://doi.org/10.1007/s11244-016-0618-7
  7. Robust hierarchical 3D carbon foam electrode for efficient water electrolysis vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05215-1
  8. Role of Hydrogen and Oxygen Activation over Pt and Pd-Doped Composites for Catalytic Hydrogen Combustion vol.9, pp.23, 2017, https://doi.org/10.1021/acsami.6b08019
  9. Enhancing Activity and Stability of Cobalt Oxide Electrocatalysts for the Oxygen Evolution Reaction via Transition Metal Doping vol.163, pp.11, 2016, https://doi.org/10.1149/2.0031611jes
  10. Are Electrospun Carbon/Metal Oxide Composite Fibers Relevant Electrode Materials for Li-Ion Batteries? vol.163, pp.14, 2016, https://doi.org/10.1149/2.0351614jes
  11. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts vol.128, pp.11, 2012, https://doi.org/10.1007/s12039-016-1180-3
  12. Unique multi-phase Co/Fe/CoFe2O4 by water-gas shift reaction, CO oxidation and enhanced supercapacitor performances vol.43, pp.None, 2012, https://doi.org/10.1016/j.jiec.2016.07.049
  13. Co3O4-CuCoO2 Nanomesh: An Interface-Enhanced Substrate that Simultaneously Promotes CO Adsorption and O2 Activation in H2 Purification vol.11, pp.6, 2019, https://doi.org/10.1021/acsami.8b19478
  14. Boosting photochemical activity by Ni doping of mesoporous CoO nanoparticle assemblies vol.6, pp.3, 2012, https://doi.org/10.1039/c8qi01324a
  15. Clustering-induced high magnetization in Co-doped TiO2 vol.2, pp.3, 2012, https://doi.org/10.1007/s42247-019-00056-2
  16. Hierarchical Mesoporous/Macroporous Co-Doped NiO Nanosheet Arrays as Free-Standing Electrode Materials for Rechargeable Li-O2 Batteries vol.11, pp.47, 2012, https://doi.org/10.1021/acsami.9b13329
  17. CATALYST PREPARATION METHODS TO REDUCE CONTAMINANTS IN A HIGH-YIELD PURIFICATION PROCESS OF MULTIWALLED CARBON NANOTUBES vol.36, pp.4, 2012, https://doi.org/10.1590/0104-6632.20190364s20190251
  18. Contrasting Effects of Potassium Addition on M3O4 (M = Co, Fe, and Mn) Oxides during Direct NO Decomposition Catalysis vol.10, pp.5, 2020, https://doi.org/10.3390/catal10050561
  19. Shock Wave Driven Solid State Phase Transformation of Co3O4 to CoO Nanoparticles vol.124, pp.19, 2020, https://doi.org/10.1021/acs.jpcc.0c02146
  20. Synthesis of 2D cobalt oxide nanosheets using a room temperature liquid metal vol.10, pp.49, 2012, https://doi.org/10.1039/d0ra06010k
  21. Energy Storage and CO2 Reduction Performances of Co/Co2C/C Prepared by an Anaerobic Ethanol Oxidation Reaction Using Sacrificial SnO2 vol.10, pp.10, 2012, https://doi.org/10.3390/catal10101116
  22. N-doped Co3O4 catalyst with a high efficiency for the catalytic decomposition of N2O vol.509, pp.None, 2021, https://doi.org/10.1016/j.mcat.2021.111656
  23. Photocatalytic and Electrocatalytic Properties of Cu-Loaded ZIF-67-Derivatized Bean Sprout-Like Co-TiO2/Ti Nanostructures vol.11, pp.8, 2012, https://doi.org/10.3390/nano11081904
  24. Cobalt supported on carbon nanotubes for methane chemical vapor deposition for the production of new carbon nanotubes vol.45, pp.31, 2012, https://doi.org/10.1039/d1nj02442f
  25. Heteroatom-doped Co-MOF derivative enhancing immobilization and activity of two enzymes for small-molecules electrochemical determination vol.172, pp.no.pb, 2012, https://doi.org/10.1016/j.microc.2021.106942