DOI QR코드

DOI QR Code

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air

강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향

  • Lee, Dong Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 이동복 (성균관대학교 신소재공학과)
  • Received : 2011.11.23
  • Published : 2012.05.25

Abstract

Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. T. E. Park, U. H. Lee, K. S. Sohn, S. K. Lee, I. S. Kim, C. H. Yim, and D. G. Kim, Korean J. Met. Mater. 48, 394 (2010). https://doi.org/10.3365/KJMM.2010.48.05.394
  2. M. J. Kim, D. B. Lee, and S. P. Baek, Korean J. Met. Mater. 48, 907 (2010). https://doi.org/10.3365/KJMM.2010.48.10.907
  3. T. W. Kim, I. J. Shon, I. Y. Ko, J. K. Yoon, J. M. Doh, and S. H. Jo, Korean J. Met. Mater. 48, 981 (2010). https://doi.org/10.3365/KJMM.2010.48.11.981
  4. I. S. Oh, K. C. Cho, D. H. Kim, G. M. Kim, and I. R. Sohn, J. Kor. Inst. Met. & Mater. 47, 229 (2009).
  5. H. J. Jang, K. S. Yun, and C. J. Park, Korean J. Met. Mater. 48, 741 (2010).
  6. D. J. Ha, Y. J. Kim, J. S. Lee, Y. D. Lee, and S. H. Lee, J. Kor. Inst. Met. & Mater. 46, 593 (2008).
  7. D. W. Kim and H. S. Kim, J. Kor. Inst. Met. & Mater. 46, 652 (2008).
  8. D. B. Lee and T. D. Nguyen, J. Kor. Inst. Met. & Mater. 47, 235 (2009).
  9. D. B. Lee, Korean J. Met. Mater. 49, 153 (2011).
  10. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA, (2008).
  11. S. H. Jeon, K. G. Chin, K. S. Shin, H. S. Sohn, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 289 (2008).
  12. T. Adachi and G. H. Meier, Oxid. Met. 27, 347 (1987). https://doi.org/10.1007/BF00659276
  13. C.W. Tuck, Corros. Sci. 5, 631 (1965). https://doi.org/10.1016/S0010-938X(65)90189-7
  14. A. Atkinson, Corros. Sci. 22, 87 (1982). https://doi.org/10.1016/0010-938X(82)90071-3
  15. K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi, and X. Guo, ISIJ Int. 47, 1329 (2007). https://doi.org/10.2355/isijinternational.47.1329
  16. F. S. Stott, Mater. Sci. Technol. 5, 734 (1989). https://doi.org/10.1179/026708389790222771
  17. F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163 (1976). https://doi.org/10.1007/BF00612158
  18. N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, UK (2006).
  19. M. J. Radler, J. B. Cohen, G. P. Sykora, T. Mason, D. E. Ellis, and J. Faber Jr, J. Phys. Chem. Solids 53, 141 (1992). https://doi.org/10.1016/0022-3697(92)90022-6
  20. P. Kofstad, Solid State Ionics 12, 101 (1984). https://doi.org/10.1016/0167-2738(84)90136-X
  21. P. Kofstad, Oxid. Met. 44, 3 (1995). https://doi.org/10.1007/BF01046721