Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.4.300

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air  

Lee, Dong Bok (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.4, 2012 , pp. 300-309 More about this Journal
Abstract
Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.
Keywords
alloys; rolling; oxidation; scanning electron microscopy; steel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. E. Park, U. H. Lee, K. S. Sohn, S. K. Lee, I. S. Kim, C. H. Yim, and D. G. Kim, Korean J. Met. Mater. 48, 394 (2010).   DOI   ScienceOn
2 M. J. Kim, D. B. Lee, and S. P. Baek, Korean J. Met. Mater. 48, 907 (2010).   DOI   ScienceOn
3 T. W. Kim, I. J. Shon, I. Y. Ko, J. K. Yoon, J. M. Doh, and S. H. Jo, Korean J. Met. Mater. 48, 981 (2010).   DOI   ScienceOn
4 I. S. Oh, K. C. Cho, D. H. Kim, G. M. Kim, and I. R. Sohn, J. Kor. Inst. Met. & Mater. 47, 229 (2009).
5 H. J. Jang, K. S. Yun, and C. J. Park, Korean J. Met. Mater. 48, 741 (2010).
6 D. J. Ha, Y. J. Kim, J. S. Lee, Y. D. Lee, and S. H. Lee, J. Kor. Inst. Met. & Mater. 46, 593 (2008).
7 D. W. Kim and H. S. Kim, J. Kor. Inst. Met. & Mater. 46, 652 (2008).
8 D. B. Lee and T. D. Nguyen, J. Kor. Inst. Met. & Mater. 47, 235 (2009).
9 D. B. Lee, Korean J. Met. Mater. 49, 153 (2011).
10 D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, USA, (2008).
11 S. H. Jeon, K. G. Chin, K. S. Shin, H. S. Sohn, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 289 (2008).
12 T. Adachi and G. H. Meier, Oxid. Met. 27, 347 (1987).   DOI
13 C.W. Tuck, Corros. Sci. 5, 631 (1965).   DOI   ScienceOn
14 A. Atkinson, Corros. Sci. 22, 87 (1982).   DOI   ScienceOn
15 K. Kusabiraki, R. Watanabe, T. Ikehata, M. Takeda, T. Onishi, and X. Guo, ISIJ Int. 47, 1329 (2007).   DOI   ScienceOn
16 F. S. Stott, Mater. Sci. Technol. 5, 734 (1989).   DOI   ScienceOn
17 F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163 (1976).   DOI   ScienceOn
18 N. Birks, G. H. Meier and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, UK (2006).
19 M. J. Radler, J. B. Cohen, G. P. Sykora, T. Mason, D. E. Ellis, and J. Faber Jr, J. Phys. Chem. Solids 53, 141 (1992).   DOI   ScienceOn
20 P. Kofstad, Solid State Ionics 12, 101 (1984).   DOI
21 P. Kofstad, Oxid. Met. 44, 3 (1995).   DOI   ScienceOn