• Title/Summary/Keyword: Ni alloys

Search Result 711, Processing Time 0.026 seconds

The Wetting and Interfacial Reaction of Vacuum Brazed Joint between Diamond Grit(graphite) and Cu-13Sn-12Ti Filler Alloy (다이아몬드 grit(흑연) / Cu-13Sn-12Ti 삽입금속 진공 브레이징 접합체의 젖음성 및 계면반응)

  • Ham, Jong-Oh;Lee, Chi-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.49-58
    • /
    • 2010
  • Various alloy system, such as Cu-Sn-Ti, Cu-Ag-Ti, and Ni-B-Cr-based alloy are used for the brazing of diamond grits. However, the problem of the adhesion strength between the diamond grits and the brazed alloy is presented. The adhesion strength between the diamond grits and the melting filler alloy is predicted by the contact angle, thereby, instead of diamond grit, the study on the wettability between the graphite and the brazing alloy has been indirectly executed. In this study, Cu-13Sn-12Ti filler alloy was manufactured, and the contact angles, the shear strengths and the interfacial area between the graphites (diamond grits) and braze matrix were investigated. The contact angle was decreased on increasing holding time and temperature. The results of shear strength of the graphite joints brazed filler alloys were observed that the joints applied Cu-13Sn-12Ti alloy at brazing temperature $940^{\circ}C$ was very sound condition indicating the shear tensile value of 23.8 MPa because of existing the widest carbide(TiC) reaction layers. The micrograph of wettability of the diamond grit brazed filler alloys were observed that the brazement applied Cu-13Sn-12Ti alloy at brazing temperature $990^{\circ}C$ was very sound condition because of existing a few TiC grains in the vicinity of the TiC layers.

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Corrosion of Containment Alloys in Molten Salt Reactors and the Prospect of Online Monitoring

  • Hartmann, Thomas;Paviet, Patricia
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.43-63
    • /
    • 2022
  • The aim of this review is to communicate some essential knowledge of the underlying mechanism of the corrosion of structural containment alloys during molten salt reactor operation in the context of prospective online monitoring in future MSR installations. The formation of metal halide species and the progression of their concentration in the molten salt do reflect containment corrosion, tracing the depletion of alloying metals at the alloy salt interface will assure safe conditions during reactor operation. Even though the progress of alloying metal halides concentrations in the molten salt do strongly understate actual corrosion rates, their prospective 1st order kinetics followed by near-linearly increase is attributed to homogeneous matrix corrosion. The service life of the structural containment alloy is derived from homogeneous matrix corrosion and near-surface void formation but less so from intergranular cracking (IGC) and pitting corrosion. Online monitoring of corrosion species is of particular interest for molten chloride systems since besides the expected formation of chromium chloride species CrCl2 and CrCl3, other metal chloride species such as FeCl2, FeCl3, MoCl2, MnCl2 and NiCl2 will form, depending on the selected structural alloy. The metal chloride concentrations should follow, after an incubation period of about 10,000 hours, a linear projection with a positive slope and a steady increase of < 1 ppm per day. During the incubation period, metal concentration show 1st order kinetics and increasing linearly with time1/2. Ideally, a linear increase reflects homogeneous matrix corrosion, while a sharp increase in the metal chloride concentration could set a warning flag for potential material failure within the projected service life, e.g. as result of intergranular cracking or pitting corrosion. Continuous monitoring of metal chloride concentrations can therefore provide direct information about the mechanism of the ongoing corrosion scenario and offer valuable information for a timely warning of prospective material failure.

Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction (황산용액에서 용매추출에 의한 코발트(II), 니켈(II) 및 구리(II) 분리)

  • Moon, Hyun Seung;Song, Si Jeong;Tran, Thanh Tuan;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2022
  • The smelting reduction of spent lithium-ion batteries results in metallic alloys of cobalt, nickel, and copper. To develop a process to separate the metallic alloys, leaching of the metallic mixtures of these three metals with H2SO4 solution containing 3% H2O2 dissolved all the cobalt and nickel, together with 9.6% of the copper. Cyanex 301 selectively extracted Cu(II) from the leaching solution, and copper ions were completely stripped with 30% aqua regia. Selective extraction of Co(II) from a Cu(II)-free raffinate was possible using the ionic liquid ALi-SCN. Three-stage cross-current stripping of the loaded ALi-SCN by a 15% NH3 solution resulted in the complete stripping of Co(II). A process was proposed to separate the three metal ions from the sulfuric acid leaching solutions of metallic mixtures by employing solvent extraction.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

EFFECT OF T6 HEAT TREATMENT ON THE SCRATCH WEAR BEHAVIOR OF EXTRUDED Al-12WT.%Si ALLOY

  • YEON-JI KANG;JONG-HO KIM;JONG-IL HWANG;KEE-AHN LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.617-622
    • /
    • 2019
  • This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10-1 mm3 and 7.8×10-2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.

The effects of different metal posts, cements, and exposure parameters on cone-beam computed tomography artifacts

  • Ana Priscila Lira de Farias Freitas;Larissa Rangel Peixoto;Fernanda Clotilde Mariz Suassuna;Patricia Meira Bento;Ana Marly Araujo Maia Amorim;Karla Rovaris Silva;Renata Quirino de Almeida Barros;Andrea dos Anjos Pontual de Andrade Lima;Daniela Pita de Melo
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Purpose: This study assessed the intensity of artifacts produced by 2 metal posts, 2 cements, and different exposure parameters using 2 cone-beam computed tomography (CBCT) units. Materials and Methods: The sample was composed of 20 single-rooted premolars, divided into 4 groups: Ni-Cr/zinc phosphate, Ni-Cr/resin cement, Ag-Pd/zinc phosphate, and Ag-Pd/resin cement. Samples were scanned before and after post insertion and cementation using a CS9000 3D scanner with 4 exposure parameters (85/90 kV and 6.3/10 mA) and an i-CAT scanner with 120 kV and 5 mA. The presence of artifacts was assessed subjectively by 2 observers and objectively by a trained observer using ImageJ software. The Mann-Whitney, Wilcoxon, weighted kappa, and chi-square tests were used to assess data at a 95% confidence level(α<0.05). Results: In the subjective analyses, AgPd presented more hypodense and hyperdense lines than NiCr (P<0.05), and more hypodense halos were found using i-CAT (P<0.05) than using CS9000 3D. More hypodense halos, hypodense lines, and hyperdense lines were observed at 10 mA than at 6.3 mA (P<0.05). More hypodense halos were observed at 85 kV than at 90 kV (P<0.05). CS9000 3D presented more hypodense and hyperdense lines than i-CAT (P<0.05). In the objective analyses, AgPd presented higher percentages of hyperdense and hypodense artifacts than NiCr (P<0.05). Zinc phosphate cement presented higher hyperdense artifact percentages on CS9000 3D scans(P<0.05). CS9000 3D presented higher artifact percentages than i-CAT(P<0.05). Conclusion: High-atomic-number alloys, higher tube current, and lower tube voltage may increase the artifacts present in CBCT images.

Separation of Nickel and Tin from copper alloy dross (구리 합금 부산물에서의 주석과 니켈의 분리)

  • Lee, Jung-Il;Hong, Chang Woo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.224-228
    • /
    • 2014
  • Recently, the demands for separation/recovery of valuable metals such as nickel or tin from copper based alloys has been attracting much attention from the viewpoints of environmental protection and resource utilization. In this report, experimental results on concentration increasement of nickel and tin compared to the previous report are investigated. Ni is successfully separated by a organic solvent and reduced to the metal powder whose concentration is over 98 %. Sn is separated by a selective solution method and its concentration is increased to 97.5 % by three consecutive solution and reduction process. Crystal structure, surface morphology and microstructure of the separated samples are studied.

The Study for Fracture in the First Stage Blade of Aircraft Engine (항공기엔진용 1단계 터빈블레이드에 대한 파손 연구)

  • Yoon, Youngwoung;Park, Hyoungkyu;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.806-813
    • /
    • 2018
  • The fracture of a turbine blade of aerospace engine is presented. Although there are a lot of causes and failure modes in blades, the main failure modes are two ways that fracture and fatigue. Degradation of blade material affects most failure modes. Total propagation of failure in this study specifies failure of fracture type. Some section appears fatigue mode. Especially since this study describes analysis of failure for blade in high temperature, it can be a case in point. Analysed blade is Ni super alloy. Investigations of blade are visual inspection, material, microstructure, high temperature stress rupture creep test, analysis and fracture surface, etc. The root cause for fracture was stress rupture due to abnormal thermal environment. Thermal property of Ni super alloy is excellent but if each chemical composition of alloys are different due to change mechanical properties, selection of material is very important.

Analysis and Mechanical Behavior of Coating Layer in Metallic Glass Matrix Composite (비정질 기지 복합재 코팅층의 미세조직 분석 및 기계적 거동)

  • Jang, Beom Taek;Yi, Seong Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.629-636
    • /
    • 2014
  • For surface modification, bulk metallic glass coatings were fabricated using metallic glass powder and a mixture of a self-fluxing alloy or/and hard metal alloys with a heat-resisting property using a high velocity oxy-fuel coating thermal spraying process. Microstructural analyses and mechanical tests were carried out using X-ray diffraction, a scanning electron microscope, an atomic force microscope, a three-dimensional optical profiler, and nanoindenation. As a result, the monolithic metallic glass coating was found to consist of solid particle and lamellae regions that included many pores. Second phase-reinforced composite coatings with a self-fluxing alloy or/and hard metal alloy additives were employed with in-situ $Cr_2Ni_3$ precipitate or/and ex-situ WC particles in an amorphous matrix. The mechanical behaviors of the solid particles and lamella regions showed large hardness and elastic modulus differences. The mechanical properties of the particle regions in the metallic glass composite coatings were superior to those of the lamellae regions in the monolithic metallic glass coatings, but indicated similar trends in matrix region of all the coating layers.