DOI QR코드

DOI QR Code

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process

초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동

  • 류근혁 (단국대학교 에너지공학과) ;
  • 소형섭 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 윤지석 (엔에이티엠(주)) ;
  • 김인호 (엔에이티엠(주)) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2019.05.15
  • Accepted : 2019.06.14
  • Published : 2019.06.28

Abstract

Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Keywords

References

  1. Y. B. Zhu, Y. Wang, X. Y. Zhang and G. W. Qin: Int. J. Refract. Met. Hard Mater., 25 (2007) 275. https://doi.org/10.1016/j.ijrmhm.2006.08.003
  2. H. ur Rehman, K. Durst, S. Neumeier, A. B. Parsa, A. Kostka, G. Eggeler and M. Goken: Mater. Sci. Eng. A, 634 (2015) 202. https://doi.org/10.1016/j.msea.2015.03.045
  3. Y. Kim, S. Lee, E. P. Kim and J. W. Noh: Int. J. Refract. Met. Hard Mater., 29 (2011) 112. https://doi.org/10.1016/j.ijrmhm.2010.08.009
  4. W. M. Tucho, H. Mauroy, J. C. Walmsley, S. Deledda, R. Holmestad and B. C. Hauback: Scr. Mater., 63 (2010) 637. https://doi.org/10.1016/j.scriptamat.2010.05.039
  5. A. Skumavc, J. Tusek, A. Nagode and L. Kosec: Int. J. Mater. Res., 104 (2013) 1143. https://doi.org/10.3139/146.110963
  6. J. W. Yan, Y. Liu, A. F. Peng and Q. G. Lu: Trans. Nonferrous Met. Soc. China, 19 (2009) s711. https://doi.org/10.1016/S1003-6326(10)60137-9
  7. O. Dincer, M. K. Pehlivanoglu, N. K. Caliskan, I. Karakaya and A. Kalkanli: Int. J. Refract. Met. Hard Mater., 50 (2015) 106. https://doi.org/10.1016/j.ijrmhm.2014.12.009
  8. D. P. Xiang, L. Ding, Y. Y. Li, J. B. Li, X. Q. Li and C. Li: Mater. Sci. Eng. A, 551 (2012) 95. https://doi.org/10.1016/j.msea.2012.04.099
  9. R. M. German: Sintering theory and practice, Solar-Terrestrial Physics (1996) 568.
  10. S. Eroglu and T. Baykara: J. Mater. Process. Technol., 103 (2000) 288. https://doi.org/10.1016/S0924-0136(00)00499-4
  11. O. V.Tolochko, O. G Klimova, S. S Ordanian, D.-I. Cheong and Y. M. Kim: Rev. Adv. Mater. Sci., 21 (2009) 192.
  12. T. Ryu, K. S. Hwang, Y. J. Choi and H. Y. Sohn: Int. J. Refract. Met. Hard Mater., 27 (2009) 701. https://doi.org/10.1016/j.ijrmhm.2008.11.004
  13. S. Zhang, Y. Wen and H. Zhang: Powder Technol., 253 (2014) 464. https://doi.org/10.1016/j.powtec.2013.11.052
  14. H. Lei, Y.-J. Tang, J.-J. Wei, J. Li, X.-B. Li and H.-L. Shi: Ultrason. Sonochem., 14 (2007) 81. https://doi.org/10.1016/j.ultsonch.2006.01.008
  15. Y. Han, J. Fan, T. Liu, H. Cheng and J. Tian: Int. J. Refract. Met. Hard Mater., 34 (2012) 18. https://doi.org/10.1016/j.ijrmhm.2012.02.014
  16. D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0
  17. A. Moitra, S. Kim, J. Houze, B. Jelinek, S. G. Kim, S. J. Park, R. M. German and M. F. Horstemeyer: J. Phys. D: Appl. Phys., 41 (2008) 185406. https://doi.org/10.1088/0022-3727/41/18/185406
  18. M. Chakrabarti, A. Banerjee, D. Sanyal, M. Sutradhar and A. Chakrabarti: J. Mater. Sci., 43 (2008) 4175. https://doi.org/10.1007/s10853-008-2573-6
  19. S. S. Jung, E. S. Yoon and J. S. Lee: Korean J. Met. Mater., 47 (2009) 597.
  20. H. Wang, M. Jia, P. Huang and Z. Chen: Energy Convers. Manage., 51 (2010) 846. https://doi.org/10.1016/j.enconman.2009.11.020
  21. D. P. Xiang, L. Ding, Y. Y. Li, X. Y. Chen and T. M. Zhang: Mater. Sci. Eng. A, 578 (2013) 18. https://doi.org/10.1016/j.msea.2013.04.065
  22. S. C. Lee, C. W. Lee, S. S. Jung, B. H. Cha and J. S. Lee: J. Korean Powder Metall. Inst., 14 (2007) 101. https://doi.org/10.4150/KPMI.2007.14.2.101
  23. B. Clarke: Influence of Viscosity on Grinding in Ball-mills, (1966).
  24. T. G. Myers, J. P. F. Charpin and M. S. Tshehla: Appl. Math. Modell., 30 (2006) 799. https://doi.org/10.1016/j.apm.2005.05.013
  25. L. A. Perez-Maqueda, A. Duran and J. L. Perez-Rodriguez: Appl. Clay Sci., 28 (2005) 245. https://doi.org/10.1016/j.clay.2004.01.012
  26. J. D. Gates, M. S. Dargusch, J. J. Walsh, S. L. Field, M. J. -P. Hermand, B. G. Delaup and J. R. Saad: Wear, 265 (2008) 865. https://doi.org/10.1016/j.wear.2008.01.008
  27. S. Y. Wang, H. Ren, Q. J. Jiao and B. L. Han: Adv. Mater. Res., 924 (2014) 343. https://doi.org/10.4028/www.scientific.net/AMR.924.343
  28. V. D. Noto, M. Piga, S. Lavina, E. Negro, K. Yoshida, R. Ito and T. Furukawa: Electrochim. Acta, 55 (2010) 1431. https://doi.org/10.1016/j.electacta.2009.06.011
  29. P. Patnaik: Handbook of inorganic chemicals, McGraw-Hill, New York (2003) 529.
  30. Z. G. Dong, S. Gao, P. Zhou, R. K. Kang and D. M. Guo: Adv. Mater. Res., 565 (2012) 105. https://doi.org/10.4028/www.scientific.net/AMR.565.105
  31. E. D. Hollander, J. J. Derksen, O. S. L. Bruinsma, H. E. A. van den Akker and G. M. van Rosmalen: Chemical Engineering Science, 56 (2001) 2531. https://doi.org/10.1016/S0009-2509(00)00435-8
  32. D. R. Lide: CRC Handbook of Chemistry and Physics, CRC press, 85 (2004).
  33. D. V. Pinjari and A. B. Pandit: Ultrason. Sonochem, 17 (2010) 845. https://doi.org/10.1016/j.ultsonch.2010.03.005
  34. K. Okumura: Adv. Colloid Interface Sci., 225 (2018) 64. https://doi.org/10.1016/j.cis.2017.07.021