Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.3.201

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process  

Ryu, KeunHyuk (Department of Energy Engineering, Dankook University)
So, HyeongSub (Korea Institute for Rare Metal, KITECH)
Yun, JiSeok (NATM Co.)
Kim, InHo (NATM Co.)
Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.26, no.3, 2019 , pp. 201-207 More about this Journal
Abstract
Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.
Keywords
Tungsten heavy alloy; Ultrasonic milling; Viscosity; Metal oxide; Nano particles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Okumura: Adv. Colloid Interface Sci., 225 (2018) 64.   DOI
2 Y. Kim, S. Lee, E. P. Kim and J. W. Noh: Int. J. Refract. Met. Hard Mater., 29 (2011) 112.   DOI
3 W. M. Tucho, H. Mauroy, J. C. Walmsley, S. Deledda, R. Holmestad and B. C. Hauback: Scr. Mater., 63 (2010) 637.   DOI
4 A. Skumavc, J. Tusek, A. Nagode and L. Kosec: Int. J. Mater. Res., 104 (2013) 1143.   DOI
5 J. W. Yan, Y. Liu, A. F. Peng and Q. G. Lu: Trans. Nonferrous Met. Soc. China, 19 (2009) s711.   DOI
6 O. Dincer, M. K. Pehlivanoglu, N. K. Caliskan, I. Karakaya and A. Kalkanli: Int. J. Refract. Met. Hard Mater., 50 (2015) 106.   DOI
7 D. P. Xiang, L. Ding, Y. Y. Li, J. B. Li, X. Q. Li and C. Li: Mater. Sci. Eng. A, 551 (2012) 95.   DOI
8 R. M. German: Sintering theory and practice, Solar-Terrestrial Physics (1996) 568.
9 S. Eroglu and T. Baykara: J. Mater. Process. Technol., 103 (2000) 288.   DOI
10 Y. B. Zhu, Y. Wang, X. Y. Zhang and G. W. Qin: Int. J. Refract. Met. Hard Mater., 25 (2007) 275.   DOI
11 H. ur Rehman, K. Durst, S. Neumeier, A. B. Parsa, A. Kostka, G. Eggeler and M. Goken: Mater. Sci. Eng. A, 634 (2015) 202.   DOI
12 O. V.Tolochko, O. G Klimova, S. S Ordanian, D.-I. Cheong and Y. M. Kim: Rev. Adv. Mater. Sci., 21 (2009) 192.
13 T. Ryu, K. S. Hwang, Y. J. Choi and H. Y. Sohn: Int. J. Refract. Met. Hard Mater., 27 (2009) 701.   DOI
14 S. Zhang, Y. Wen and H. Zhang: Powder Technol., 253 (2014) 464.   DOI
15 H. Lei, Y.-J. Tang, J.-J. Wei, J. Li, X.-B. Li and H.-L. Shi: Ultrason. Sonochem., 14 (2007) 81.   DOI
16 Y. Han, J. Fan, T. Liu, H. Cheng and J. Tian: Int. J. Refract. Met. Hard Mater., 34 (2012) 18.   DOI
17 D. G. Kim, S. T. Oh, H. Jeon, C. H. Lee and Y. D. Kim: J. Alloys Compd., 354 (2003) 239.   DOI
18 A. Moitra, S. Kim, J. Houze, B. Jelinek, S. G. Kim, S. J. Park, R. M. German and M. F. Horstemeyer: J. Phys. D: Appl. Phys., 41 (2008) 185406.   DOI
19 M. Chakrabarti, A. Banerjee, D. Sanyal, M. Sutradhar and A. Chakrabarti: J. Mater. Sci., 43 (2008) 4175.   DOI
20 S. S. Jung, E. S. Yoon and J. S. Lee: Korean J. Met. Mater., 47 (2009) 597.
21 B. Clarke: Influence of Viscosity on Grinding in Ball-mills, (1966).
22 H. Wang, M. Jia, P. Huang and Z. Chen: Energy Convers. Manage., 51 (2010) 846.   DOI
23 D. P. Xiang, L. Ding, Y. Y. Li, X. Y. Chen and T. M. Zhang: Mater. Sci. Eng. A, 578 (2013) 18.   DOI
24 S. C. Lee, C. W. Lee, S. S. Jung, B. H. Cha and J. S. Lee: J. Korean Powder Metall. Inst., 14 (2007) 101.   DOI
25 T. G. Myers, J. P. F. Charpin and M. S. Tshehla: Appl. Math. Modell., 30 (2006) 799.   DOI
26 L. A. Perez-Maqueda, A. Duran and J. L. Perez-Rodriguez: Appl. Clay Sci., 28 (2005) 245.   DOI
27 J. D. Gates, M. S. Dargusch, J. J. Walsh, S. L. Field, M. J. -P. Hermand, B. G. Delaup and J. R. Saad: Wear, 265 (2008) 865.   DOI
28 S. Y. Wang, H. Ren, Q. J. Jiao and B. L. Han: Adv. Mater. Res., 924 (2014) 343.   DOI
29 V. D. Noto, M. Piga, S. Lavina, E. Negro, K. Yoshida, R. Ito and T. Furukawa: Electrochim. Acta, 55 (2010) 1431.   DOI
30 P. Patnaik: Handbook of inorganic chemicals, McGraw-Hill, New York (2003) 529.
31 Z. G. Dong, S. Gao, P. Zhou, R. K. Kang and D. M. Guo: Adv. Mater. Res., 565 (2012) 105.   DOI
32 E. D. Hollander, J. J. Derksen, O. S. L. Bruinsma, H. E. A. van den Akker and G. M. van Rosmalen: Chemical Engineering Science, 56 (2001) 2531.   DOI
33 D. R. Lide: CRC Handbook of Chemistry and Physics, CRC press, 85 (2004).
34 D. V. Pinjari and A. B. Pandit: Ultrason. Sonochem, 17 (2010) 845.   DOI