DOI QR코드

DOI QR Code

Separation of Co(II), Ni(II), and Cu(II) from Sulfuric Acid Solution by Solvent Extraction

황산용액에서 용매추출에 의한 코발트(II), 니켈(II) 및 구리(II) 분리

  • Moon, Hyun Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Song, Si Jeong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Tran, Thanh Tuan (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • 문현승 (목포대학교 공과대학 신소재공학과) ;
  • 송시정 (목포대학교 공과대학 신소재공학과) ;
  • ;
  • 이만승 (목포대학교 공과대학 신소재공학과)
  • Received : 2021.09.18
  • Accepted : 2021.12.08
  • Published : 2022.02.28

Abstract

The smelting reduction of spent lithium-ion batteries results in metallic alloys of cobalt, nickel, and copper. To develop a process to separate the metallic alloys, leaching of the metallic mixtures of these three metals with H2SO4 solution containing 3% H2O2 dissolved all the cobalt and nickel, together with 9.6% of the copper. Cyanex 301 selectively extracted Cu(II) from the leaching solution, and copper ions were completely stripped with 30% aqua regia. Selective extraction of Co(II) from a Cu(II)-free raffinate was possible using the ionic liquid ALi-SCN. Three-stage cross-current stripping of the loaded ALi-SCN by a 15% NH3 solution resulted in the complete stripping of Co(II). A process was proposed to separate the three metal ions from the sulfuric acid leaching solutions of metallic mixtures by employing solvent extraction.

폐리튬이온배터리를 고온에서 용융환원시키면 코발트, 니켈 및 구리 금속합금상을 얻을 수 있다. 이러한 금속합금상으로부터 금속을 분리회수하기 위한 공정을 개발하기 위해 코발트, 니켈 및 구리 금속을 혼합한 금속혼합물을 3% 과산화수소를 함유한 2 M 황산용액으로 침출하면 9.6%의 구리와 함께 코발트와 니켈이 모두 침출된다. 침출용액에서 Cyanex 301로 구리(II)가 선택적으로 추출되었으며, 30% 왕수로 구리(II)를 탈거했다. 구리가 분리된 여액에서 이온성액체인 ALi-SCN으로 Co(II)를 선택적으로 추출했으며, 15%의 암모니아용액으로 3단의 교차식 탈거를 통해 모두 탈거했다. 본 연구를 통해 코발트, 니켈 및 구리 금속혼합물의 황산침출액에서 용매추출로 세 금속을 분리할 수 있는 공정을 제안했다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구결과 (과제번호 20011183)이며 이에 감사드립니다.

References

  1. Natarajan, S., Aravindan, V., 2018 : Burgeoning prospects of spent lithium-ion batteries in multifarious applications, Advanced Energy Materials, 8(33), pp.1-16.
  2. Or, T., Gourley, S. W. D., Kaliyappan, K., et al., 2019 : Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, pp.6-43.
  3. Shin, S. M., Kim, N. H., Sohn, J. S., et al., 2005 : Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79, pp.172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  4. Yusupov, T. S., Isupov, V. P., Vladimirov, A. G., et al., 2015 : Analysis of Material Composition and Dissociation Potential of Minerals in Mine Waste to Assess Productivity of Lithium Concentrates, Journal of Mining Science, 51(6), pp.1242-1247. https://doi.org/10.1134/s106273911506054x
  5. Swain, B., Jeong, J., Lee, J. C., et al., 2008 : Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: A mathematical model correlation to predict optimum operational conditions, Separation and Purification Technology, 63(2), pp.360-369. https://doi.org/10.1016/j.seppur.2008.05.022
  6. Reddy, R. G., Chaubal, P., Plstorius, P. C., et al., 2016 : Chemistry and Materials Science: Professional, The Minerals, Metals & Materials Society, 978-3-319-48769-4.
  7. Li, J., Wang, G., Xu, Z., 2015 : Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, Journal of Hazardous Materials, 302, pp.97-104. https://doi.org/10.1016/j.jhazmat.2015.09.050
  8. Lv, W., Wang, Z., Cao, H., et al., 2017 : A Critical review and analysis on the recycling of spent Lithium-ion batteries, ACS Sustainable Chemistry & Engineering, 6(2), pp.1504-1521. https://doi.org/10.1021/acssuschemeng.7b03811
  9. Xu, Jinqiu., Thomas, H. R., Francis, R. W., et al., B., 2008 : A review of processes and technologies for the recycling of lithium-ion secondary batteries, Journal of Power Sources, 177(2), pp.512-527. https://doi.org/10.1016/j.jpowsour.2007.11.074
  10. Garcia, E. M., Taroco, H. A., Matencio, T., et al., 2012 : Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: its application as supercapacitor, Journal of Applied Electrochemistry, 42, pp.361-366. https://doi.org/10.1007/s10800-012-0419-z
  11. Garcia, E. M., Taroco, H. A., Matencio, T., et al., 2011 : Electrochemical recycling of cobalt from spent cathodes of lithium-ion batteries: its application as coating on SOFC interconnects, Journal of Applied Electrochemistry, 41, 1373. https://doi.org/10.1007/s10800-011-0339-3
  12. Garcia, E. M., Santos, J. S., Pereira, E. C., et al., 2008 : Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique, Journal of Power Sources, 185(1), pp.549-553. https://doi.org/10.1016/j.jpowsour.2008.07.011
  13. Moon, H. S., Song, S. J., Tran, T. T., et al., 2021 : Leaching of Cobalt and Nickel from Metallic Mixtures by Inorganic and Organic Acid Solutions, Resources Recycling, 30(2), pp.53-60. https://doi.org/10.7844/KIRR.2021.30.2.53
  14. Tran, T. T., Moon, H. S., Lee, M. S., 2020 : Separation of Cobalt, Nickel, and Copper from Synthetic Metallic Alloy by Selective Dissolution with Acid Solutions Containing Oxidizing Agent, Mineral Processing and Extractive Metallurgy Review, pp.1-13.
  15. Rybka, P., Regel-Rosocka, M., 2012 : Nickel and Cobalt Extraction from Chloride Solutions with Quaternary Phosphonium Salts, Separation Science and Technology, 47(9), pp.1296-1302. https://doi.org/10.1080/01496395.2012.672532
  16. Lee, S. A., Lee, M. S., 2019 : Selective Extraction of Cu(II) from Sulfuric Acid Leaching Solutions of Spent Lithium Ion Batteries Using Cyanex 301, Korean Journal of Metals and Materials, 57(9), pp.596-602. https://doi.org/10.3365/kjmm.2019.57.9.596
  17. Sole, K. C., Hiskey, J. B., 1995 : Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301, Hydrometallurgy, 37, pp.129-147. https://doi.org/10.1016/0304-386X(94)00023-V
  18. Tran T.T., Moon H.S., Lee M.S., 2021 : Recovery of cobalt, nickel and copper compounds from UHT processed spent lithium-ion batteries by hydrometallurgical process, Mineral Processing and Extractive Metallurgy Review, pp.1-13.
  19. Moon, H. S., Song, S. J., Tran, T. T., et al., 2020 : Solvent extraction separation of Co(II) and Ni(II) from weak hydrochloric acid solution with ionic liquids synthesized from organophosphorus acids, Resources Recycling, 30(2), pp.53-60. https://doi.org/10.7844/KIRR.2021.30.2.53