DOI QR코드

DOI QR Code

The effects of different metal posts, cements, and exposure parameters on cone-beam computed tomography artifacts

  • Received : 2022.10.14
  • Accepted : 2023.02.14
  • Published : 2023.06.30

Abstract

Purpose: This study assessed the intensity of artifacts produced by 2 metal posts, 2 cements, and different exposure parameters using 2 cone-beam computed tomography (CBCT) units. Materials and Methods: The sample was composed of 20 single-rooted premolars, divided into 4 groups: Ni-Cr/zinc phosphate, Ni-Cr/resin cement, Ag-Pd/zinc phosphate, and Ag-Pd/resin cement. Samples were scanned before and after post insertion and cementation using a CS9000 3D scanner with 4 exposure parameters (85/90 kV and 6.3/10 mA) and an i-CAT scanner with 120 kV and 5 mA. The presence of artifacts was assessed subjectively by 2 observers and objectively by a trained observer using ImageJ software. The Mann-Whitney, Wilcoxon, weighted kappa, and chi-square tests were used to assess data at a 95% confidence level(α<0.05). Results: In the subjective analyses, AgPd presented more hypodense and hyperdense lines than NiCr (P<0.05), and more hypodense halos were found using i-CAT (P<0.05) than using CS9000 3D. More hypodense halos, hypodense lines, and hyperdense lines were observed at 10 mA than at 6.3 mA (P<0.05). More hypodense halos were observed at 85 kV than at 90 kV (P<0.05). CS9000 3D presented more hypodense and hyperdense lines than i-CAT (P<0.05). In the objective analyses, AgPd presented higher percentages of hyperdense and hypodense artifacts than NiCr (P<0.05). Zinc phosphate cement presented higher hyperdense artifact percentages on CS9000 3D scans(P<0.05). CS9000 3D presented higher artifact percentages than i-CAT(P<0.05). Conclusion: High-atomic-number alloys, higher tube current, and lower tube voltage may increase the artifacts present in CBCT images.

Keywords

Acknowledgement

This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)- Finance Code 001.

References

  1. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin North Am 2008; 52: 707-30. https://doi.org/10.1016/j.cden.2008.05.005
  2. Queiroz PM, Groppo FC, Oliveira ML, Haiter-Neto F, Freitas DQ. Evaluation of the efficacy of a metal artifact reduction algorithm in different cone beam computed tomography scanning parameters. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 123: 729-34. https://doi.org/10.1016/j.oooo.2017.02.015
  3. Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, Schoemer E. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011; 40: 265-73. https://doi.org/10.1259/dmfr/30642039
  4. Lira de Farias Freitas AP, Cavalcanti YW, Costa FCM, Peixoto LR, Maia AMA, Rovaris K, et al. Assessment of artefacts produced by metal posts on CBCT images. Int Endod J 2019; 52: 223-36. https://doi.org/10.1111/iej.12999
  5. Fontenele RC, Farias Gomes A, Rosado LPL, Neves FS, Freitas DQ. Mapping the expression of beam hardening artefacts produced by metal posts positioned in different regions of the dental arch. Clin Oral Investig 2021; 25: 571-79. https://doi.org/10.1007/s00784-020-03494-z
  6. Gaeta-Araujo H, Nascimento EHL, Fontenele RC, Mancini AXM, Freitas DQ, Oliveira-Santos C. Magnitude of beam-hardening artifacts produced by gutta-percha and metal posts on cone-beam computed tomography with varying tube current. Imaging Sci Dent 2020; 50: 1-7. https://doi.org/10.5624/isd.2020.50.1.1
  7. Codari M, de Faria Vasconcelos K, Ferreira Pinheiro Nicolielo L, Haiter Neto F, Jacobs R. Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views. Clin Oral Implants Res 2017; 28: 1509-14. https://doi.org/10.1111/clr.13019
  8. Gholami F, Kohani P, Aalaei S. Effect of nickel-chromium and non-precious gold color alloy cast posts on fracture resistance of endodontically treated teeth. Iran Endod J 2017; 12: 303-6.
  9. Vasconcelos KF, Nicolielo LF, Nascimento MC, Haiter-Neto F, Boscolo FN, Van Dessel J, et al. Artefact expression associated with several cone-beam computed tomographic machines when imaging root filled teeth. Int Endod J 2015; 48: 994-1000. https://doi.org/10.1111/iej.12395
  10. Celikten B, Jacobs R, deFaria Vasconcelos K, Huang Y, Nicolielo LFP, Orhan K. Assessment of volumetric distortion artifact in filled root canals using different cone-beam computed tomographic devices. J Endod 2017; 43: 1517-21. https://doi.org/10.1016/j.joen.2017.03.035
  11. de Oliveira Pinto MG, Sousa Melo SL, Cavalcanti YW, de Lima ED, Bento PM, de Melo DP. Influence of tooth position within the field of view on the intensity of cone-beam computed tomographic imaging artifacts when assessing teeth restored with various intracanal materials. Imaging Sci Dent 2020; 50: 141-51. https://doi.org/10.5624/isd.2020.50.2.141
  12. Candemil AP, Mangione F, Vasconcelos KF, Oenning AC, Jacobs R, Freitas DQ, et al. Influence of the exomass on the detection of simulated root fracture in cone-beam CT - an exvivo study. Dentomaxillofac Radiol 2021; 50: 20200450.
  13. Candemil AP, Salmon B, Freitas DQ, Haiter-Neto F, Oliveira ML. Distribution of metal artifacts arising from the exomass in small field-of-view cone beam computed tomography scans. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130: 116-25. https://doi.org/10.1016/j.oooo.2020.01.002
  14. Schneider SW. A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol 1971; 32: 271-5. https://doi.org/10.1016/0030-4220(71)90230-1
  15. Pinto MGO, Rabelo KA, Sousa Melo SL, Campos PSF, Oliveira LSAF, Bento PM, et al. Influence of exposure parameters on the detection of simulated root fractures in the presence of various intracanal materials. Int Endod J 2017; 50: 586-94. https://doi.org/10.1111/iej.12655
  16. Oenning AC, Pauwels R, Stratis A, De Faria Vasconcelos K, Tijskens E, De Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 2019; 9: 5521.
  17. Costa FF, Gaia BF, Umetsubo OS, Cavalcanti MG. Detection of horizontal root fracture with small-volume cone-beam computed tomography in the presence and absence of intracanal metallic post. J Endod 2011; 37: 1456-9. https://doi.org/10.1016/j.joen.2011.05.040
  18. Sarkis-Onofre R, Amaral Pinheiro H, Poletto-Neto V, Bergoli CD, Cenci MS, Pereira-Cenci T. Randomized controlled trial comparing glass fiber posts and cast metal posts. J Dent 2020; 96: 103334.
  19. Panjnoush M, Kheirandish Y, Kashani PM, Fakhar HB, Younesi F, Mallahi M. Effect of exposure parameters on metal artifacts in cone beam computed tomography. J Dent (Tehran) 2016; 13: 143-50.
  20. Chindasombatjaroen J, Kakimoto N, Murakami S, Maeda Y, Furukawa S. Quantitative analysis of metallic artifacts caused by dental metals: comparison of cone-beam and multi-detector row CT scanners. Oral Radiol 2011; 27: 114-20. https://doi.org/10.1007/s11282-011-0071-z
  21. Decurcio DA, Bueno MR, de Alencar AH, Porto OC, Azevedo BC, Estrela C. Effect of root canal filling materials on dimensions of cone-beam computed tomography images. J Appl Oral Sci 2012; 20: 260-7. https://doi.org/10.1590/S1678-77572012000200023
  22. Freitas-E-Silva A, Marmora B, Barriviera M, Panzarella FK, Raitz R. CBCT performance and endodontic sealer influence in the diagnosis of vertical root fractures. J Contemp Dent Pract 2019; 20: 552-6. https://doi.org/10.5005/jp-journals-10024-2556
  23. Cavalcanti MGP, Salineiro FC, Barros FM, Barros FBA. Influence of endodontic sealers artifacts in the detection of vertical root fractures. Braz Dent J 2022; 33: 22-30. https://doi.org/10.1590/0103-6440202204392
  24. Katkar R, Steffy DD, Noujeim M, Deahl ST 2nd, Geha H. The effect of milliamperage, number of basis images, and export slice thickness on contrast-to-noise ratio and detection of mandibular canal on cone beam computed tomography scans: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122: 646-53. https://doi.org/10.1016/j.oooo.2016.08.006
  25. Pauwels R, Seynaeve L, Henriques JC, de Oliveira-Santos C, Souza PC, Westphalen FH, et al. Optimization of dental CBCT exposures through mAs reduction. Dentomaxillofac Radiol 2015; 44: 20150108.
  26. Diniz de Lima E, Lira de Farias Freitas AP, Mariz Suassuna FC, Sousa Melo SL, Bento PM, Pita de Melo D. Assessment of cone-beam computed tomographic artifacts from different intracanal materials on birooted teeth. J Endod 2019; 45: 209-13.e2. https://doi.org/10.1016/j.joen.2018.11.007
  27. Safi Y, Hosseinpour S, Aziz A, Bamedi M, Malekashtari M, Vasegh Z. Effect of amperage and field of view on detection of vertical root fracture in teeth with intracanal posts. Iran Endod J 2016; 11: 202-7.
  28. Esmaeili F, Johari M, Haddadi P, Vatankhah M. Beam hardening artifacts: comparison between two cone beam computed tomography scanners. J Dent Res Dent Clin Dent Prospects 2012; 6: 49-53.
  29. Freitas DQ, Fontenele RC, Nascimento EHL, Vasconcelos TV, Noujeim M. Influence of acquisition parameters on the magnitude of cone beam computed tomography artifacts. Dentomaxillofac Radiol 2018; 47: 20180151.
  30. de Oliveira Pinto MG, Melo SLS, Suassuna FCM, Marinho LE, Leite JBDS, Batista AUD, et al. Influence of size of field of view(FOV), position within the FOV, and scanning mode on the detection of root fracture and observer's perception of artifacts in CBCT images. Dentomaxillofac Radiol 2021; 50: 20200563. 
  31. Yamamoto-Silva FP, de Oliveira Siqueira CF, Silva MAGS, Fonseca RB, Santos AA, Estrela C, et al. Influence of voxel size on cone-beam computed tomography-based detection of vertical root fractures in the presence of intracanal metallic posts. Imaging Sci Dent 2018; 48: 177-84. https://doi.org/10.5624/isd.2018.48.3.177
  32. Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 2013; 100: 94-9. https://doi.org/10.1111/j.1600-0501.2011.02382.x
  33. Khosravifard A, Saberi BV, Khosravifard N, Motallebi S, Kajan ZD, Ghaffari ME. Application of an auto-edge counting method for quantification of metal artifacts in CBCT images: a multivariate analysis of object position, field of view size, tube voltage, and metal artifact reduction algorithm. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132: 735-43.  https://doi.org/10.1016/j.oooo.2021.03.012