• Title/Summary/Keyword: Ni addition

Search Result 1,048, Processing Time 0.032 seconds

Gold Alloy Plating on Electronic Parts(II) (전자 부품상의 금도금에 관한 연구 (제 2 보))

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 1976
  • In order to get high wear-resistant gold alloy plating on electronic parts, on attempt has been made, in which Cu, Ni, and Zn EDTA salts were added in gold palting solution. The results obtained on the wear resistance are as follows: 1. The addition of 0.5g/ι or over Cu in plating solution, showed 1.5 times more wear resistance than in case of no addition. 2. The addition of 1.5g/ι or over Ni, showed 3.5 times more wear-resistance . 3. The addition of 1.5g/ι and 4.0g/ι Zn , showed 3.5 times and 6.8 times more wear resistance , respectively. 4. The addition of 1.5g/ι Ni and 1.0g/ι Zn simultaneously , showed about 10 times more wear resistance than in case of no addition.

  • PDF

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian;Kim, Jin Won;Ocon, Joey D.;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.552-559
    • /
    • 2020
  • Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

Catalytic Decomposition of SF6 from Semiconductor Manufacturing Process (촉매를 이용한 반도체 공정 SF6 처리에 관한 연구)

  • Hwang, Cheol-Won;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.1019-1027
    • /
    • 2013
  • Sulfur hexa-fluoride has been used as a etching gas in semiconductor industry. From the globally environmental issues, it is urgent to control the emissions of this significant greenhouse gas. The main objective of this experimental investigation was to find the effective catalyst for $SF_6$ decomposition. The precursor catalyst of hexa-aluminate was prepared to investigate the catalytic activity and stability. The precursor catalyst of hexa-aluminate was modified with Ni to enhance the catalytic activities and stability. The catalytic activity for $SF_6$ decomposition increased by the addition of Ni and maximized at 6wt% addition of Ni. The addition of 6wt% Ni in precursor catalyst of hexa-aluminate improved the resistant to the HF and reduced the crystallization and phase transition of catalyst.

Effects of Alloying Elements on the Microstructure and Mechanical Properties of the Copper Forming Dies (금형소재용 동합금의 미세조직 및 기계적 성질에 미치는 첨가원소의 영향)

  • Bae, Jin-Ho;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.3
    • /
    • pp.271-274
    • /
    • 1998
  • Effects of Si and Ni addition on the microstructure and mechanical properties of the Cu-12wt.%Al-5wt.%Fe-1wt.%Mn alloy have been investigated experimentally. Microstructure of the as-cast specimen is found to be refined markedly by additions of Ni and Si. By the addition of Ni, volume fraction of the ${\kappa}$ phase is increased, but volume fraction of the ${\gamma}$ phase is decreased. Hardness is increased with the addition of Ni, due to increasing of ${\kappa}$ phase which is harder than ${\gamma}$ phase. However, Charpy impact value is not significally decreased possibly due to the formation of isolate ${\kappa}$ phase.

  • PDF

Effect of Vanadium Addition on the Cavitation Erosion Resistance of Fe-Cr-Ni-Si-C Hardfacing Alloy (Fe-Cr-Ni-Si-C계 경면처리 합금의 Cavitaon Erosion 저항성에 미치는 Vanadium 첨가의 영향)

  • 김경오;김준기;장세기;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.297-303
    • /
    • 1998
  • The influences of vanadium addition on the cavitation erosion resistance pf Fe-Cr-Ni-Si-C hardfacing alloy were investigated using a vibratory apparatus up to 30 hrs. It was shown that 1wt.%V additioned alloy improved the resistance to cavitation damage. However, further increase in V content up to 2wt.% reduced the cavitation erosion resistance. It was considered that the addition of V developed the cavitation erosion resistance by reducing the stacking fault energy of Fe-Cr-Ni-Si-C alloy. However, the further increase in V content seemed to reduce the cavitation erosion resistance by increasing the matrix/carbide interfacial area, which was the preferential sites of the cavitation damage.

  • PDF

Sintering Characteristics of ZnO Fabricated by Spark Plasma Sintering Process for High Temperature Thermoelectric Materials Application (고온용 ZnO계 열전 재료의 방전플라즈마 소결 특성 및 미세구조)

  • 심광보;김경훈;홍영호;채재홍
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.560-565
    • /
    • 2003
  • M-doped (M=Al, Ni) ZnO thermoelectric materials were fully densified at low temperatures of 800∼1,000$^{\circ}C$ and their sintering characteristics and microstructural features were investigated. Electron microscopic analysis showed that the addition of NiO promoted tile formation of solid solution and caused actively grain growth. The addition of A1$_2$O$_3$ prevented the evaporation of pure ZnO at grain boundaries and suppressed the grain growth by the formation of secondary phase. In case of the addition of A1$_2$O$_3$ together with NiO, the specimen showed an excellent microstructure and also the SEM-EBSP (Electron Back-scattered Diffraction Pattern) analysis confirmed that it shows a superior grain boundary distribution to the others specimens. These microstructural characteristics induced by the addition of A1$_2$O$_3$ together with NiO may increase the electrical conductivity by the increase in carrier concentration and decrease the thermal conductivity by the phonon scattering effect and, consequently, improve the thermoelectric property.

The Influence of Vanadium Addition on Fracture Behavior and Martensite Substructure in a Ni-36.5at.%Al Alloy (Ni-36.5at.%Al 합금에서 V 첨가가 파괴거동 및 마르텐사이트 내부조직에 미치는 영향)

  • Kim, Young Do;Choi, Ju;Wayman, C. Marvin
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.203-211
    • /
    • 1992
  • Fracture behavior and martensite substructure of Ni-36.5at.%Al alloy were investigated with the addition of vanadium which is known as scavenging element of grain boundary. The fracture surfaces were examined by scanning electron microscopy and the EDX spectrometer was applied for composition analysis of fracture surfaces. The substructure of martensite was studied by transmission electron microscopy. By addition of vanadium, fracture surfaces show mixed modes of intergranular and transgranular fracture and more Al content is found on the grain boundaries. For Ni-36.5at.%Al alloy, the planar faults observed in the martensite plates are the internal twins. By increasing the vanadium content, the modulated structure with stacking faults and dislocations dominates while the twinned martensite disappears. The stacking fault is determined to be extrinsic due to the substitution of V for Al. It is concluded that the segregation of sulfur on the high-energy state stacking fault area suppresses the intergranular fracture.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

Effect of Crystallographic Orientation of CrNi Underlayer on Magnetic Properties of CoCrTa / CrNi Magnetic Recording Media Deposited by E-Beam Evaporator (E-Beam Evaporator로 제조된 CoCrTa/ Cr-Ni 자기기록 매체의 자기적 특성에 미치는 Cr-Ni 하지층의 결정배향효과)

  • 고흥재;남인탁
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.4
    • /
    • pp.205-211
    • /
    • 1997
  • The magnetic properties change which was induced by addition of small amount of Ni into Cr underlayer in CoCrTa/ CrNi thin film deposited by electron beam evaporator was investigated. The additional Ni element was found to be beneficial for incease in the coercivity of the thin film deposited at the room temperature. The origin of coercivity increase was elucidated by crystal orientation and microstructure investigation using XRD and AFM respectively. It was found that the grain size were increased by Ni addition. The coercivity of the film with CrNi underlayer is lower than that of film with Cr underlayer when prepared with higher substrate temperature. This result may be originated with the increase in grain size. When film was deposited at 280 $^{\circ}C$ substrate temperature, Cr segregation in grain boundary is found to be the other factor for determining coercivity value.

  • PDF