Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.7.385

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys  

Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.23, no.7, 2013 , pp. 385-391 More about this Journal
Abstract
The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.
Keywords
ductile-brittle transition; metastable austenitic; alloys; austenite stability; low-temperature toughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Foct, A. Hendry, Proc. Conf. High Nitrogen Steels (HNS 88), Lille, France, 1988, The Institute of Metals, London (1989).
2 P. J. Uggowitzer, R. Magdowski, M. O. Speidel, ISIJ Int., 26, 901 (1996).
3 V. G. Gavriljuk, H. Berns, High Nitrogen Steels, Springer, Berlin (1999).
4 M. O. Speidel, C. Kowanda, M. Diener, HNS 2003 (High Nitrogen Steels), Schaffhausen, Switzerland, Institute of Metallurgy, ETH, Zurich (2003).
5 L. P. Karjalainen, T. Taulavuori, M. Sellman, A. Kyrolainen, Steel Res. Int. 79, 404 (2008).
6 M. A. E. Harzenmoser, R. P. Reed, P. J. Uggowitzer, M. O. Speidel, in High Nitrogen Steels, eds. G. Stein, H. Witulski (Dusseldorf, Germany: Stahl&Eisen, 1990) p.197.
7 D. Dulieu, J. Nutting, in Metallurgical Developments in High-Alloy Steels, London, The Iron and Steel Institute, Special Report, 86, 140 (1964).
8 M. Milititsky, D. K. Matlock, A. Regully, N. Dewispelaere, J. Penning, H. Hanninen, Mater. Sci. Eng., A, 496, 189 (2008).   DOI   ScienceOn
9 T. Tsuchiyama, CAMP-ISIJ, 22, 1148 (2009).
10 B. Hwang, T-H. Lee, S-J. Park, C-S. Oh, S-J. Kim, Mater. Sci. Eng., A, 528, 7257 (2011).   DOI   ScienceOn
11 A. Frehn, E. Ratte, W. Bleck, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004) p. 447
12 J. Sjoberg, Wire, 23, 155 (1973).
13 T. Biggs, R. D. Knutsen, Journal de Physique IV, 5, 515 (1995).
14 T-H. Lee, C-S. Oh, S-J. Kim, Scr. Mater., 58, 110 (2008).   DOI   ScienceOn
15 J. Talonen, H. Hanninen H, Acta Mater., 55, 6108 (2007).   DOI   ScienceOn
16 J. D. Defilippi, K. G. Brickner, E. M. Gilbert, Trans. Metall. Soc. AIME, 245, 2141 (1969).
17 R. L. Tobler, D. Meyn, Metall. Trans. A, 19, 1626 (1988).   DOI
18 Y. Tomota, Y. Xia, K. Inoue, Acta Mater., 46, 1577 (1998).   DOI   ScienceOn
19 S. Hamano, T. Koga, T. Shimizu, T. Katsurai, T. Nishiyama, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004) p. 411.
20 S. Narita, S. Hamano, T. Shimizu, T. Noda, in Proc. Int. Conf. High Nitrogen Steels 2006 (Metallurigical Industry Press, Sichuan, China, 2006) p. 174.
21 J. Bernauer, G. Saller, M. O. Speidel, in Proc. 7th Int. Conf. High Nitrogen Steels (GRIPS media GmbH, Ostend, Belgium, Sept. 2004). p. 529.
22 R. G. Stringfellow, D. M. Parks, G. B. Olson, Acta Metall. Mater., 40, 1703 (1992).   DOI   ScienceOn
23 B. M. Gonzalez, C. S. B. Castro, V. T. L. Buono, J. M. C. Vilela, M. S. Andrade, J. M. D. Moraes, M. J. Mantel, Mater. Sci. Eng., A, 343, 51 (2003).   DOI   ScienceOn