DOI QR코드

DOI QR Code

Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process

  • Gandionco, Karl Adrian (Laboratory of Electrochemical Engineering, Department of Chemical Engineering, College of Engineering, University of the Philippines Diliman) ;
  • Kim, Jin Won (Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST)) ;
  • Ocon, Joey D. (Laboratory of Electrochemical Engineering, Department of Chemical Engineering, College of Engineering, University of the Philippines Diliman) ;
  • Lee, Jaeyoung (Electrochemical Reaction and Technology Laboratory, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2020.08.18
  • Accepted : 2020.09.14
  • Published : 2020.10.12

Abstract

Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.

Keywords

References

  1. WWAP (United Nations World Water Assessment Programme), The United Nations World Water Development Report 2017 Wastewater: The Untapped Resource. http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed 8 January 2018) (2017).
  2. United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. http://esa.un.org/unpd/wpp/publications/Files/WPP2017_KeyFindings.pdf (accessed 8 January 2018) (2017).
  3. H. El-Dessouky and H. Ettouney, Teaching desalination-A multidiscipline engineering science, Heat Transf. Eng., 23, 1-3 (2002).
  4. T. Humplik, J. Lee, S. C. O'Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, Nanostructured materials for water desalination, Nanotechnology, 22, 292001 (2011). https://doi.org/10.1088/0957-4484/22/29/292001
  5. J. E. Miller, Sandia National Laboratories Report, SAND2003-0800, Review of water resources and desalination technologies. http://prod.sandia.gov/techlib/access-control.cgi/2003/030800.pdf (accessed 8 January 2018) (2003).
  6. M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55, 3845-3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  7. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  8. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Water desalination via capacitive deionization: What is it and what can we expect from it?, Energy Environ. Sci., 8, 2296-2319 (2015). https://doi.org/10.1039/C5EE00519A
  9. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  10. Z.-H. Huang, Z. Yang, F. Kang, and M. Inagaki, Carbon electrodes for capacitive deionization, J. Mater. Chem. A, 5, 470-496 (2017). https://doi.org/10.1039/C6TA06733F
  11. A. M. Johnson, A. W. Venolia, R. G. Wilbourne, and J. Newman, The Electrosorb Process for Desalting Water. Research and Development Progress Report No. 516. http://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB200056.xhtml (accessed 8 January 2018) (1970).
  12. G. Wang, B. Qian, Q. Dong, J. Yang, Z. Zhao, and J. Qiu, Highly mesoporous activated carbon electrode for capacitive deionization, Sep. Purif. Technol., 103, 216-221 (2013). https://doi.org/10.1016/j.seppur.2012.10.041
  13. L H. Li, L. Pan, C. Nie, Y. Liu, and Z. Sun, Reduced graphene oxide and activated carbon composites for capacitive deionization, J. Mater. Chem., 22, 15556 (2012). https://doi.org/10.1039/c2jm32207b
  14. H. Oda and Y. Nakagawa, Removal of ionic substances from dilute solution using activated carbon electrodes, Carbon, 41, 1037-1047 (2003). https://doi.org/10.1016/S0008-6223(03)00013-7
  15. I. Villar, S. Roldan, V. Ruiz, M. Granda, C. Blanco, R. Menendez, and R. Santamaria, Capacitive deionization of NaCl solutions with modified activated carbon electrodes, Energy & Fuels, 24, 3329-3333 (2010). https://doi.org/10.1021/ef901453q
  16. L. Zou, G. Morris, and D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination, 225, 329-340 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  17. R. Niu, H. Li, Y. Ma, L. He, and J. Li, An insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid, Electrochim. Acta, 176, 755-762 (2015). https://doi.org/10.1016/j.electacta.2015.07.012
  18. K. Laxman, M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta, Improved desalination by zinc oxide nanorod induced electric field enhancement in capacitive deionization of brackish water, Desalination, 359, 64-70 (2015). https://doi.org/10.1016/j.desal.2014.12.029
  19. K. Laxman, M. T. Z. Myint, H. Bourdoucen, and J. Dutta, Enhancement in ion adsorption rate and desalination efficiency in a capacitive deionization cell through improved electric field distribution using electrodes composed of activated carbon cloth coated with Zinc oxide nanorods, ACS Appl. Mater. Interfaces, 6, 10113-10120 (2014). https://doi.org/10.1021/am501041t
  20. K. Laxman, M. T. Z. Myint, R. Khan, T. Pervez, and J. Dutta, Effect of a semiconductor dielectric coating on the salt adsorption capacity of a porous electrode in a capacitive deionization cell, Electrochim. Acta, 166, 329-337 (2015). https://doi.org/10.1016/j.electacta.2015.03.049
  21. P.-I. Liu, L.-C. Chunga, H. Shaoa, T.-M. Lianga, R.-Y. Hornga, and C.-C. M. Ma, Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization, Electrochim. Acta, 96, 173-179 (2013). https://doi.org/10.1016/j.electacta.2013.02.099
  22. M.-W. Ryoo, J.-H. Kim, and G. Seo, Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution, J. Colloid Interface Sci., 264, 414-419 (2003). https://doi.org/10.1016/S0021-9797(03)00375-8
  23. P. Srimuk, M. Zeiger, N. Jackel, A. Tolosa, B. Kruner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M. E. Suss, and V. Presser, Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water, Electrochim. Acta, 224, 314-328 (2017). https://doi.org/10.1016/j.electacta.2016.12.060
  24. Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, Review on carbon-based composite materials for capacitive deionization, RSC Adv., 5, 15205-15225 (2015). https://doi.org/10.1039/C4RA14447C
  25. B. Li, M. Zheng, H. Xue, and H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorg. Chem. Front., 3, 175-202 (2016). https://doi.org/10.1039/C5QI00187K
  26. V. C. Lokhande, A. C. Lokhande, C. D. Lokhande, J. H. Kim, and T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers, J. Alloys Compd., 682, 381-403 (2016). https://doi.org/10.1016/j.jallcom.2016.04.242
  27. F. Shi, L. Li, X.-L. Wang, C.-D. Gua, and J.-P. Tu, Metal oxide/hydroxide-based materials for supercapacitors, RSC Adv., 4, 41910-41921 (2014). https://doi.org/10.1039/C4RA06136E
  28. G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41, 797-828 (2012). https://doi.org/10.1039/C1CS15060J
  29. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang, and Y.-W. Yang, Mesoporous transition metal oxides for supercapacitors, Nanomaterials, 5, 1667-1689 (2015). https://doi.org/10.3390/nano5041667
  30. J. J. Wouters, J. J. Lado, M. I. Tejedor-Tejedora, R. Perez-Roa, and M. A. Anderson, Carbon fiber sheets coated with thin-films of $SiO_2$ and ${\gamma}-Al_2O_3 $ as electrodes in capacitive deionization: Relationship between properties of the oxide films and electrode performance, Electrochim. Acta, 112, 763-773 (2013). https://doi.org/10.1016/j.electacta.2013.08.170
  31. Y.-H. Liu, H.-C. His, K.-C. Li, K.-C, and C.-H. Hou, Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization, ACS Sustain. Chem. Eng., 4, 4762-4770 (2016). https://doi.org/10.1021/acssuschemeng.6b00974
  32. P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, Theory of membrane capacitive deionization including the effect of the electrode pore space, J. Colloid Interface Sci., 360, 239-248 (2011). https://doi.org/10.1016/j.jcis.2011.04.049
  33. R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning, and A. van der Wal, Charge efficiency: A functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1, 205-210 (2010). https://doi.org/10.1021/jz900154h
  34. H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, 1st ed., 153-156, Elsevier Science Ltd (2006).
  35. J.-B. Lee, K.-K. Park, S.-W. Yoon, P.-Y. Park, K.-I. Park, and C.-W. Lee, Desalination performance of a carbon-based composite electrode, Desalination, 237, 155-161 (2009). https://doi.org/10.1016/j.desal.2007.11.058
  36. B. Chen, Y. Wang, Z. Chang, X. Wang, M. Li, X. Liu, L. Zhang, and Y. Wu, Enhanced capacitive desalination of $MnO_2$ by forming composite with multi-walled carbon nanotubes, RSC Adv., 6, 6730-6736 (2016). https://doi.org/10.1039/C5RA26210K
  37. A. G. El-Deen, J.-H. Choi, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat, A $TiO_2$ nanofiber/activated carbon composite as a novel effective electrode material for capacitive deionization of brackish water, RSC Adv., 4, 64634-64642 (2014). https://doi.org/10.1039/C4RA09948F
  38. A. G. El-Deen, N. A. M. Barakat, and H. Y. Kim, Graphene wrapped $MnO_2$-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination, 344, 289-298 (2014). https://doi.org/10.1016/j.desal.2014.03.028
  39. A. G. El-Deen, N. A. M. Barakat, K. A. Khalil, M. Motlak, and H. Y. Kim, Graphene/$SnO_2$ nanocomposite as an effective electrode material for saline water desalination using capacitive deionization, Ceram. Int., 40, 14627-14634 (2014). https://doi.org/10.1016/j.ceramint.2014.06.049
  40. A. G. El-Deen, J.-H. Choi, C. S. Kim, K. A. Khalil, A. A. Almajid, and N. A. M. Barakat, $TiO_2$ nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization, Desalination, 361, 53-64 (2015). https://doi.org/10.1016/j.desal.2015.01.033
  41. H. Li, Y. Ma, and R. Niu, Improved capacitive deionization performance by coupling $TiO_2$ nanoparticles with carbon nanotubes, Sep. Purif. Technol., 171, 93-100 (2016). https://doi.org/10.1016/j.seppur.2016.07.019
  42. N. T. Trinh, S. Chung, J. K. Lee, and J. Lee, Development of high quality $Fe_3O_4/rGO$ composited electrode for low energy water treatment, J. Energy Chem., 25, 354-360 (2016). https://doi.org/10.1016/j.jechem.2016.03.008
  43. A. S. Yasin, H. O. Mohamed, I. M. A. Mohamed, H. M. Mousa, and N. A. M. Barakat, Enhanced desalination performance of capacitive deionization using zirconium oxide nanoparticles-doped graphene oxide as a novel and effective electrode, Sep. Purif. Technol., 171, 34-43 (2016). https://doi.org/10.1016/j.seppur.2016.07.014
  44. A. S. Yasin, H. O. Mohamed, I. M. A. Mohamed, H. M. Mousa, and N. A. M. Barakat, $ZrO_2$ nanofibers/activated carbon composite as a novel and effective electrode material for the enhancement of capacitive deionization performance, RSC Adv., 7, 4616-4626 (2017). https://doi.org/10.1039/C6RA26039J
  45. K. B. Hatzell, L. Fan, M. Beidaghi, M. Boota, E. Pomerantseva, E. C. Kumbur, and Y. Gogotsi, Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor, ACS Appl. Mater. Interfaces, 6, 8886-8893 (2014). https://doi.org/10.1021/am501650q
  46. C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio, Desalination, 367, 60-68 (2015). https://doi.org/10.1016/j.desal.2015.03.035
  47. M. T. Z. Myint and J. Dutta, Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach, Desalination, 305, 24-30 (2012). https://doi.org/10.1016/j.desal.2012.08.010
  48. Z. H. Huang, M. Wang, L. Wang, and F. Kang, Relation between the charge efficiency of activated carbon fiber and its desalination performance, Langmuir, 28, 5079-5084 (2012). https://doi.org/10.1021/la204690s