• Title/Summary/Keyword: Newton methods

Search Result 252, Processing Time 0.028 seconds

Note on Calculation of Cnoidal Wave Parameters (크노이드파의 매개변수 산정)

  • Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.227-232
    • /
    • 1995
  • A new evaluation procedure for calculating the Jacobian elliptic parameter is presented. This procedure is useful in calculating the trajectory for cnoidal wave generation. Upon specification of water depth, the wave height and either the wave period or the wavelength, the presented algorithm uses the Newton-Raphson method and the arithmetic and geometric-mean scales to calculate the profile directly, without trial and error procedures or look-up in tables. It is shown that the algorithm provides equally accurate result as the ad hoc methods previously used.

  • PDF

Polychotomous Machines;

  • Koo, Ja-Yong;Park, Heon Jin;Choi, Daewoo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.225-232
    • /
    • 2003
  • The support vector machine (SVM) is becoming increasingly popular in classification. The import vector machine (IVM) has been introduced for its advantages over SMV. This paper tries to improve the IVM. The proposed method, which is referred to as the polychotomous machine (PM), uses the Newton-Raphson method to find estimates of coefficients, and the Rao and Wald tests, respectively, for addition and deletion of import points. Because the PM basically follows the same addition step and adopts the deletion step, it uses, typically, less import vectors than the IVM without loosing accuracy. Simulated and real data sets are used to illustrate the performance of the proposed method.

An unwanted facility location problem with negative influence cost and transportation cost (기피비용과 수송비용을 고려한 기피시설 입지문제)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • In the location science, environmental effect becomes a new main consideration for site selection. For the unwanted facility location selection, decision makers should consider the cost of resolving the environmental conflict. We introduced the negative influence cost for the facility which was inversely proportional to distance between the facility and residents. An unwanted facility location problem was suggested to minimize the sum of the negative influence cost and the transportation cost. The objective cost function was analyzed as nonlinear type and was neither convex nor concave. Three GRASP (Greedy Randomized adaptive Search Procedure) methods as like Random_GRASP, Epsilon_GRASP and GRID_GRASP were developed to solve the unwanted facility location problem. The Newton's method for nonlinear optimization problem was used for local search in GRASP. Experimental results showed that quality of solution of the GRID_GRASP was better than those of Random_GRASP and Epsilon_GRASP. The calculation time of Random_GRASP and Epsilon_GRASP were faster than that of Grid_GRASP.

An Efficient Improvement of the Iterative Eigenvalue Calculation Method and the Selection of Initial Values in AESOPS Algorithm (AESOPS 알고리즘의 고유치 반복계산식과 고유치 초기값 선정의 효율적인 개선에 관한 연구)

  • Kim, Deok-Young;Kwon, Sae-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1394-1400
    • /
    • 1999
  • This paper presents and efficient improvement of the iterative eigenvalue calculation method and the selection of initial values in AESOPS algorithm. To determine the initial eigenvalues of the system, system state matrix is constructed with the two-axis generator model. From the submatrices including synchronous and damping coefficients, the initial eigenvalues are calculated by the QR method. Participation factors are also calculated from the above submatrices in order to determine the generators which have a important effect to the specific oscillation mode. Also, the heuristically approximated eigenvalue calculation method in the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

Application of Step Length Technique To An Eigensolution Method for Non-proportionally Damped Systems (Step Length를 이용한 비비례감쇠시스템의 고유치 해석)

  • Thanh X. H;Kim, Byoung-Wan;Jung, Hyung-Jo;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.481-490
    • /
    • 2003
  • This paper presents an efficient eigensolution method for non-proportionally damped systems. The proposed method is obtained by applying the accelerated Newton-Raphson technique and the orthonormal condition of the eigenvectors to the linearized form of the quadratic eigenproblem. A step length and a selective scheme are introduced to increase the convergence of the solution. The step length can be evaluated by minimizing the norm of the residual vector using the least square method. While the singularity may occur during factorizing process in other iteration methods such as the inverse iteration method and the subspace iteration method if the shift value is close to an exact eigenvalue, the proposed method guarantees the nonsingularity by introducing the orthonormal condition of the eigenvectors, which can be proved analytically. A numerical example is presented to demonstrate the effectiveness of the proposed method.

  • PDF

Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.256-265
    • /
    • 2023
  • Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total error was smaller, with a faster convergence speed.

A New Concept of Power Flow Analysis

  • Kim, Hyung-Chul;Samann, Nader;Shin, Dong-Geun;Ko, Byeong-Hun;Jang, Gil-Soo;Cha, Jun-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.312-319
    • /
    • 2007
  • The solution of the power flow is one of the most important problems in electrical power systems. These traditional methods such as Gauss-Seidel method and Newton-Raphson (NR) method have had drawbacks up to now such as initial values, abnormal operating solutions and divergences in heavy loads. In order to overcome theses problems, the power flow solution incorporating genetic algorithm (GA) is introduced in this paper. General operator of genetic algorithm, arithmetic crossover, and non-uniform mutation operator of GA are suggested to solve the power flow problem. While abnormal solution cannot be obtained by a NR method, multiple power flow solution can be obtained by a GA method. With a heavy load, both normal solution and abnormal solution can be obtained by a proposed method. In this paper, a floating number representation instead of the binary number representation is introduced for accuracy. Simulation results have been compared with traditional methods.

Comparison of Step-Wise and Exact Maximum Likelihood Estimations on Cell Probabilities of Contingency Table (단계별로 얻어진 이차원 분할표의 모수 추정을 위한 정확최대우도추정법과 단계별추출추정법의 비교)

  • Lee, Sang-Eun;Kang, Kee-Hoon;Jeung, Seok-O;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • In multinomial scheme with step-wise sampling, maximum likelihood estimates of multinomial probabilities are improved when some frequencies are merged. In this study, for cell probabilities in a I by J independent contingency tables, exact MLE and step-wise estimation methods are applied and the results are compared using MSE and Bias.

A Forward Link ADA Positioning method for mobile Robots (이동 로봇을 위한 순방향 링크 AOA 측위 방법)

  • Kim, Dong-Hyouk;Song, Seung-Hun;Roh, Gi-Hong;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.603-608
    • /
    • 2007
  • In the conventional AOA(angle-of-arrival) positioning utilizing reverse-link wireless channel, each sensor should be equipped with an array antenna to measure the incident angle of signal transmitting from a tag. To perform the complicated signal processing for angle measurements, sensor size and its power consumption will be large. In some applications like mobile robot location, there exists no strict restriction in tag size or in power consumption. Rather, it is desirable that the sensor would be as small as possible. This paper presents a new AOA positioning method utilizing forward-link channel. Under the assumption that the mobile robot is operating on the flat surface, the measurement model for FLAOA(tiJrward-link AOA) is derived first. Two kinds of position estimation algorithms using FLAOA measurements are proposed; Gauss-Newton method and closed-fonn solution method. With the proposed methods, we can ohtain the attitude of robot as well as its position. Positioning performance of proposed methods is compared by computer simulation. Simulation results show that the closed-form solution method using FLAOA measurements is suitable for indoor robot positioning.

ADAPTATION OF THE MINORANT FUNCTION FOR LINEAR PROGRAMMING

  • Leulmi, S.;Leulmi, A.
    • East Asian mathematical journal
    • /
    • v.35 no.5
    • /
    • pp.597-612
    • /
    • 2019
  • In this study, we propose a new logarithmic barrier approach to solve linear programming problem using the projective method of Karmarkar. We are interested in computation of the direction by Newton's method and of the step-size using minorant functions instead of line search methods in order to reduce the computation cost. Our new approach is even more beneficial than classical line search methods. We reinforce our purpose by many interesting numerical simulations proved the effectiveness of the algorithm developed in this work.