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ABSTRACT

This paper presents an efficient eigensolution method for non-proportionally damped systems.
The proposed method is obtained by applying the accelerated Newton-Raphson technique and the
orthonormal condition of the eigenvectors to the linearized form of the quadratic eigenproblem. A
step length and a selective scheme are introduced to increase the convergence of the solution. The
step length can be evaluated by minimizing the norm of the residual vector using the least square
method. While the singularity may occur during factorizing process in other iteration methods such
as the inverse iteration method and the subspace iteration method if the shift value is close to an
exact eigenvalue, the proposed method guarantees the nonsingularity by introducing the orthonormal
condition of the eigenvectors, which can be proved analytically. A numerical example is presented to

demonstrate the effectiveness of the proposed method.

Keywords: non-proportionally damped system, eigenvalue problem, step length,
Newton-Raphson technique

1. INTRODUCTION

The eigenvalue problem of the system should be solved a priori to avoid a resonance or to
define the dynamic characteristics such as natural frequencies and mode shapes if the mode
superposition method is used in the dynamic analysis of structures. In most analyses recently
employed, the proportional damping that satisfies a condition developed by Caughey and
O’Kelly (1965) is assumed for lack of more realistic representation. That is, the damping of
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the structure is assumed to be such that the free modes of vibration of the damped system
are identical to those for the undamped structure. Under this assumption, one can straightly
solve the eigenproblem in a low cost. However, in most real systems, the damping is
non-pror;ortional. Even when proportional damping is assumed for each sub-system in the
analysis of soil-structure systems, composite structures, etc., the resulting damping for the
complete structure will be non-proportional.

The common approach to solve the quadratic ‘eigenvalue problem is to reformulate the
quadratic equations into a linear one by doubling the order of the system. Many eigensolution
methods have been proposed. Transformation methods such as QR (Moler and Stewart 1973),
LZ (Kaufman 1974) or Jacobi (Veselic 1983) determine all the eigenpairs in an arbitrary
sequence. This is not efficient when only few low frequencies are required in a large system.
Moreover, since the initial matrices are modified during the solution process, these methods
cannot fully take advantage of the sparseness of the matrices.

The Perturbation method (Meirovitch and Ryland 1979; Cronin 1990; Kwak 1993;
Peres-Da-Silva et al. 1995; Tang and Wang 1995) sets the eigensolution of the undamped
system as zero-order approximation and lets the higher-order terms account for the slight
damping effect. It is very practical for slight damping case, since weakly damping implies that
the eigensolution will differ only a little from that of the corresponding undamped system.

Gupta (1974, 1981), Utku and Clemente (1984) proposed a procedure combining the Sturm
sequence and inverse iteration scheme to solve the linearized eigenproplem of spinning
structures. The procedure preserves the banded nature of the matrices and is well suited for
finding those frequencies, which fall within a certain range of interest. Despite the fact that
the method is useful to solve a small number of desired modes, it requires many complex
operations for each eigenvalue.

The subspace iteration method (Bathe and Wilson 1972; Chen and Taylor 1986; Leung 1995)
combines the inverse iteration method, simultaneous iteration method and Rayleigh-Ritz
analysis. It is a more efficient alternative algorithm than the inverse iteration procedure. The
method employs nth order submatrices of the augmented linear eigenproblem in the iteration
process by taking the block-partitioned nature of the matrices of the linearized problem. All
required modes are solved simultaneously thus the round-off errors can be minimized.
However, it requires a great deal of complex arithmetic operations.

On the other hand, Lanczos method was first proposed for undamped systems (Lanczos
1950; Paige 1971, 1972, 1976; Parlett and Scott 1979; Simon 1984), and extended to damped
systems (Parlett et al. 1985, Kim and Craig 1988; Rajakumar and Rogers 1991, Rajakumar
1993; Chen and Taylor 1988; Chen 1994). The two-sided-Lanczos algorithm (Parlett et al.
1985; Kim and Craig 1988; Rajakumar and Rogers 1991; Rajakumar 1993) requires the
generation of two sets of Lanczos vectors, left and right, and the symmetric Lanczos
algorithm (Chen and Taylor 1988; Chen 1994) uses a set of Lanczos vectors to reduce a large

eigenvalue problem in a much smaller one. Although only real arithmetic is used in the
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solution process,_ in contrast to the case of real symmetric eigenproblems, there will be a
possibility of a serious breakdown and the accuracy of the solutions obtained is low (Zheng et
al. 1997).

Recently, Lee et al. (1998) proposed an efficient solution method to improve the numerical
stability and increase the convergence by applying the modified Newton-Raphson technique
and the orthonormal condition of the eigenvectors. This study further improves the
convergence of the method by adopting the step length vs.rhich can be evaluated using the least
squares technique. In the following section, the basic concept of the proposed method is
presented. In section 3, the efficiency of the proposed method is shown by analyzing a

numerical example.
2. METHOD OF ANALYSIS
2.1 Problem Definition

The equation for free vibration of a linear time-invariant system of order n is written as
Mii +Cii +Ku =0 (1)
where M, C and K are (n x n) mass, damping and stiffness matrices of the system,
respectively, and u is the (n x 1) vector of system displacements. The damping matrix
satisfying
CM'K=KM™C (2)
is said to be proportional (Caughey and O’Kelly 1965). However, in most real systems, the
damping matrix does not satisfy Eq. (2), that is, it is non-proportional. The eigenanalysis for

such systems is traditionally performed in the space extended to 2n-dimension such as

[—(:( 131]{:;}:1[; l::]{:b} 3)

where 4 and ¢ are eigenvalue and associated eigenvector of the system, respectively. Eq. (3)
may be written as

Ay =By (4)

[-K o [c ™ fe
A‘[o M], B‘[M 0] and “"{M} (5)

Since both matrices A and B are not positive definite although they are symmetric, in

with

general, the eigenvalues and the associated eigenvectors are complex values.

2.2 Modified Newton-Raphson method (Lee et al. 1998)
Suppose that initial approximate solutions A and w® of the eigenvalue and the associated

- 483 -



eigenvector of Eq. (5) are known. Denote the approximate eigenvalue after k iterations by A0
and its associated eigenvector by \I’(k), and define the residual vector as follows
r®) = Ay - OBy® ©
The approximate eigenvector y® is then orthonormalized with respect to matrix B, such as
() By® =1 @

Let the increment of the approximate eigenvalue from step k to step (k+1) be Al('), and the
)

increment vector of the approximate eigenvector from step k to step (k+1) be A¥"' Then we
have

600 406, A 20 (8)

W = y® 4 Ay® ©)
After (k+1) iterations, the residual vector can be written as

r = AW(M)_ ﬂ,(m)B\p(M) 10)

where yt also satisfies the orthonormal condition with respect to matrix B as follows

(w(m))’Bw(m) =1 an
Substituting Eqgs. (8), (9) into Eq. (10), we can have
) = [A—(Z.(k) + Aﬂ(k))B](\v(‘) +Aw(*)) (12)

To get the solution converged to the eigenvalue and its associated eigenvector, we expect the
residual vector to be a null vector, such as

[A- (A% + AXNBYw® + Ap®)=0 (13)
Introducing Egs. (6) to (9) and neglecting the high order terms, namely, AA“BAy® anq
(AW(*)yBAl//“), Egs. (11) and (13) can be rewritten as

(A~ 1BJay® - AAOBY® = r® (14)

(WY BAy® <0 (15)

Writing Eqs. (14) and (15) in matrix form, we can have

A-i%B _B\v(’t) A\v(") r®
-w®yB o Jla®] o] (16)

If all eigenvalues are distinct, the coefficient matrix is nonsingular. The method using the
Newton-Raphson technique, despite its rapid convergence, is not efficient because the new
coefficient matrix has to be reformed and refactorized in each iteration step (Lee et al. 1998).
This time-consuming procedure could be avoided by applying the modified Newton-Raphson

technique as follows
A-19B  —By®](ay® o0
Zoors 7 e}

The symmetric coefficient matrix of Eq. (17) is also nonsingular. Once the submatrix A-i"B
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is decomposed into LDLT (L: lower triangular matrix, D: diagonal matrix), a small number of
operations are required to solve Eq. (17), since only the By® in the coefficient matrix is
changed in each iteration. However, due to negligence of the small nonlinear term

(A(M)‘l(o)bA\V(k), the convergence is lower. Therefore, the improvement of the convergence of

the method is needed to apply to a large-scale system.
2.3 Proposed method

To improve the convergence of the method, a step length is introduced in this study as
follows

WD =y ® 4 g By ® (18)

Because Eq. (18) is introduced instead of Eq. (9), the residual vector might not be a null

vector as in Eq. (13). To minimize the norm of residual vector, the least square technique is

used as follows

o = (k+1) ¥ = (k+!
) 1
where
F(‘Hl) = (A_l(’“l)BX‘v(k) + a(‘)Aw(")) (20)

Solving Eq. (19) for a* to yield

oo (Aw(*))T(A _,z(k*l)B)z\',(k)
(Aw(k)y(A _ ﬂ(k“)B)z A‘v(") (21

According to our experience, it would be better not to apply a® in the first step. The error
norm (Bathe 1996) as defined in Eq. (22) after the first step is used to determined whether to
apply a® from the second step on. Thus, we introduce a checking number 7. If the error
norm after the first step is greater than 7, step length is applied and vice versa. The

algorithm of the proposed method is shown in Table 1.
Table 1. Algorithm of the proposed method
2.4 Starting values

Initial values of the proposed method can be obtained from the intermediate results of the
iteration methods (Gupta 1974; Utku and Clement 1984; Chen et al 1986; Leung 1995) or from
the results of the approximate methods (Parlett et al 1985; Kim and Craig 1988; Rajakumar
and Roger 1991; Rajakumar 1993; Chen and Taylor 1988; Chen 1994). In this paper the
starting values are taken using the symmetric Lanczos method (Chen and Taylor 1988) with a
selective reorthogonalization process (Parlett and Scott 1979; Simon 1984), because the method

does not need complex arithmetic in the Lanczos recursive process and effectively produces
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good approximate values of the systems. If the lower p eigenvalues and the corresponding
eigenvectors are desired, the eigenvalue problem reduced by 2p Lanczos vectors is solved, and
then the p approximate eigenpairs are improved by the proposed method until the

predetermined error norm is satisfied.
3. NUMERICAL EXAMPLE

A cantilever beam with lumped viscous-dampers shown in Fig. 1 is analyzed to verify the
efficiency of the proposed method. It is modeled by 100 equal elements and has 200 degrees of
freedom. The parameters of the system are as follows: the Young modulus E = 2+10" N/m2.
The inertia of the cross section I = 2.25%10° md4. The cross section area A = 3+10™* m2. The
density of the material = 8000 kgf/m3. The mass matrix M is a consistent one. The damping
matrix C consists of the Rayleigh damping and the damping contributed from the concentrated
dampers. The Rayleigh damping is assumed for the structure itself as

C* =aM + K (23)

where the coefficients @ is 0.002 and B is 204%x10”". On the other hand, the concentrated

damping coefficient at each node is assumed to be 0.1. The structures are analyzed using two
different methods: the method proposed by Lee et al. (1998) and the proposed method. The
error norm (Bathe 1996) is computed by

" Ay ) _ l(k)B\l’(k)!L
lav®, @

error norm=

The error norm is compared with the predescribed error limit of 10 6,
Fig. 1. Cantilever beam with lumped dampers

Letting the solution time to have 20 eigenpairs with the error norm of 10° using the
proposed method be 1, then the method proposed by Lee et al. (1998) takes 1.08 times.

For each solution method, the convergence of the 14th and the 17th eigenpairs to which is
applied is depicted in Fig. 2. As shown in the figure, the convergence of the proposed method
is superior to that of Lee et al. (1998).

Fig. 2. Convergence of the 14th eigenpairs (left) and the 17th eigenpairs (right)

4. Conclusions

An efficient method for solving eigenproblems of the non-proportionally damped structures

by applying the step length and introducing the orthonormal side condition is presented.
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Characteristics of the proposed method illustrated by the numerical results are identified as

follows

(1) The convergence rate of the proposed method is improved by introducing the step length.

(2) Therefore, if the exact eigenvalues of the system are known, the proposed method can
effectively calculate the corresponding eigenvectors.

(3) The efficiency of the proposed method depends on the checking number ”. Further study

on the value of 7 is being conducted.
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Table 1. Algorithm of the proposed method

Calculate initial eigenvalue A9 and eigenvectors \V(O).

Iterate the following procedure for each eigenpair:
(a) k=0

(b) Check whether to apply the step length (apply = Yes/No)
{(c) Fork=1

{A—-/l“’)B —Bw(")]
(d) Define [-(w®)B 0

(k)
r
(e) Define —{ 0 } where % =Ay® - 1¥By®

A-19B _Bw(k) Aw(k) r® A‘V(k)
(f) Solvel-w®yB 0 Jla®[ 1o for |a¥
(g) Compute A*"=a®4a®

oo (A\y(k)Y(A—ﬂ.(kﬂ)B)z\y(k)
If apply = Yes (ay®Y (a - 229BY Ay®

else a®=1; end
Y 2 )4 g BAy®

r(k+l)

P - A\V(M)' ;L(kﬂ)B‘v(hl) and W

error norm= 2
lav®,

(h) Update A-A9B in (d) to A~A¥B if necessary to improve convergence

(i) If error norm>predetermined error limit, go to (¢) with kK = k + 1

99 e 16

K

100/4:4.0c4.0m

Fig. 1. Cantilever beam with lumped dampers
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Fig. 2. Convergence of the 14th eigenpairs (left) and the 17th eigenpairs (right)
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