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ABSTRACT: Many numerical methods have been developed since 1961, but unresolved issues remain. This study developed a numerical method to 

address these issues and determine the coefficients and properties of rotational waves with a shear current in a finite water depth. The number of 

unknown constants was reduced significantly by introducing a wavelength-independent coordinate system. The reference depth was calculated 

independently using the shooting method. Therefore, there was no need for partial derivatives with respect to the wavelength and the reference depth, 

which simplified the numerical formulation. This method had less than half of the unknown constants of the other method because Newton's method 

only determines the coefficients. The breaking limit was calculated for verification, and the result agreed with the Miche formula. The water particle 

velocities were calculated, and the results were consistent with the experimental data. Dispersion relations were calculated, and the results are consistent 

with other numerical findings. The convergence of this method was examined. Although the required series order was reduced significantly, the total 

error was smaller, with a faster convergence speed.  

 
 

 

1. Introduction 

 

Since Chappelear (1961) developed an early numerical method, 

many other numerical methods have been derived (Dean, 1965; 

Rienecker and Fenton, 1981; Chaplin, 1979; Cokelet, 1977; Fenton, 

1988). Rienecker and Fenton (1981) solved the coefficients and some 

wave properties directly using Newton’s method. This method was 

further simplified by Fenton (1988). The major modification was that 

all the required partial differentials were calculated numerically (Tao 

et al., 2007). Although neither of the above numerical methods could 

be applied to waves in deep water (Fenton, 1990), Shin (2023) 

calculated deep water breaking waves with an error of less than 

2.04×10−3 percent, demonstrating that Fourier approximation is 

effective even for deep water waves. The objective of this study was to 

extend Shin’s method (Shin, 2023) to include rotational water waves 

with a shear current in a finite depth (Shin, 2022). The basic concept 

of Shin's method (Shin, 2023) for establishing a set of equations was 

similar to Fendon's method (Rienecker and Fenton, 1981; Fenton, 

1988), and some issues with Fenton's method have been addressed. 

The first issue is inherent in Newton's method, which necessitates an 

initial solution in close proximity to the final solution. In common with 

other versions of the Fourier approximation method (Chappelear, 1961; 

Dean, 1965; Chaplin, 1979), it is sometimes necessary to solve a 

sequence of lower waves, extrapolating forward in height steps until 

the desired height is reached (Fenton, 1988). These methods can 

occasionally converge to the wrong solution with very long waves 

(Fenton, 1988). This paper shows that regression analysis can easily 

avoid this issue (Shin, 2019). 

The second issue arises from the coordinate system. Because 

Fenton’s method adopts the moving coordinate system proposed by 

Dean (1965), the abscissa is the position from the crest in the range, 

−𝐿 ≤ 𝑥 ≤ 𝐿 . Therefore, the relative position with respect to the 

wavelength, L, is unknown because the wavelength is unknown. As a 

result, the number of unknown variables to be determined in Fenton's 

method is more than double the number in this study. Furthermore, a 

nonlinear equation for calculating the wavelength was coupled to the 

set of equations for calculating the coefficients. This coupling 

complicates the problem because Newton’s method requires partial 

derivatives with respect to the wavelength. The issue can be avoided 

easily using the dimensionless coordinate system in Fig. 1 because it is 

independent of the wavelength. The abscissa is the phase in the range 

−𝜋 ≤ 𝛽 ≤ 𝜋, and is known. After determining the steepness, 𝑆, the 

wave-number is calculated as 𝑘 = 𝑆/𝐻 because wave height, 𝐻 is 

known. The steepness is calculated using the wave height condition, 

which is integrated automatically into the set of equations because it is 

linear. Therefore, it is not necessary to calculate the partial derivatives 

with regard to the wavelength in this study. 
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Fig. 1 Typical wave profile in the coordinate system 

 

The third issue arises from the water depth condition used to 

calculate the reference depth, 𝐷, which is unknown. Fenton's method 

requires partial derivatives with respect to the reference depth because 

the water depth condition is coupled to the set of nonlinear equations 

used to calculate the coefficients. Most errors in Fenton’s method occur 

when the water depth condition is calculated numerically. The required 

series order must be increased to reduce the error, and Simpson’s rule 

was used for the numerical integration. This issue was avoided by 

calculating the reference depth independently using the shooting 

method in the study. In numerical analysis, the shooting method is used 

to solve a boundary value problem by transforming it into an initial 

value problem. A set of "n" equations with "n" unknowns can be 

converted to a set of "n−1" equations with "n−1" unknowns because 

one variable can be calculated independently, assuming it is a known 

value in advance. The assumed value was determined using the 

shooting method. Although it has the disadvantage of requiring the 

calculation of one procedure as two procedures, the numerical 

formulation simplifies the process and significantly reduces the total 

number of steps needed to converge to a complete solution. The 

reference depth is not coupled to the set of equations for calculating the 

Fourier coefficients because the water depth condition is calculated 

independently. 

The fourth issue is a method for calculating the partial derivatives 

required in Newton’s method. While all the necessary partial 

derivatives were obtained numerically in Fenton (1988), they were 

calculated analytically by tensor analysis in the present study. 

Therefore, there are no errors in the partial derivatives in this study. 

Although the above-mentioned studies are irrational flows, this 

study is rotational flow based on Shin (2022). The numerical method 

used to calculate the Fourier coefficients and the related wave 

properties was not presented by Shin (2022) but is presented in the 

present study. Shin (2018) presented the numerical method for 

irrotational waves. The method was extended to rotational waves in 

this study. Shin (2022) reported the complete solutions to the Euler 

equations and calculated the waves by Le Mehaute et al. (1968). The 

fluid velocities calculated by irrotational wave theories (Fenton, 1990; 

Tao et al., 2007) and by rotational wave theory (Shin, 2022) were 

compared with the experimental data reported by Le Mehaute et al. 

(1968) on the same graphs. Unlike the irrotational waves, the results of 

the rotational wave theory agreed well with the experimental data. The 

calculated wave-breaking limit was in good accordance with the Miche 

formula. While Rienecker and Fenton (1981), Fenton (1988), Tao et al. 

(2007), Cokelet (1977), and Vadden-Broeck and Schwarts (1979) 

calculated the dispersion relations for some waves in a relative depth 

of 0.7, this study calculated these relations for many waves with 

different heights at various depths. The results were then extrapolated 

to all waves using regression analysis (Shin, 2019). The dispersion 

relations for a relative depth of 0.7 were compared and showed good 

accordance with the other results. The convergence of this study was 

tested according to the series orders. Even for relatively small orders, 

the error was significantly lower than Fenton's method and Tao et al. 

(2007). 

 

2. The Complete Solution to the Euler Equations 
 

This chapter summarizes the solution reported by Shin (2022). The 

two coordinate systems were adopted. The first was a conventional 

coordinate system (𝑡, 𝑥, 𝑦), as reported by Dean et al. (1984), in which 

the origin is located at a fixed point on the still water line (SWL). The 

x-axis is in the direction of wave propagation; the y-axis points 

vertically upward, and 𝑡 is the time. The fluid domain is bounded by 

a flat bed, 𝑦 = −ℎ (water depth), and by a free surface 𝑦 = 휂(𝑡, 𝑥). 

The second is a dimensionless coordinate system, (𝛽, 𝛼), as shown in 

Fig. 1, which is a stationary frame. The origin is located under the crest 

of the bed. Therefore, the wave profile is fixed with a periodic, even 

function in the system. The abscissa is phase 𝛽 = 𝑘𝑥 − 𝜔𝑡 in −𝜋 ≤

𝛽 ≤ 𝜋, where 𝑘 = 2𝜋/𝐿 is the wave number and 𝜔 = 2𝜋/𝑇 is the 

angular frequency. Here, 𝑇 is the wave period; 𝐿 is the wavelength, 

and the ordinate is the dimensionless elevation from the bed, 𝛼 =

𝑘(𝑦 + ℎ) in 0 ≤ 𝛼 ≤ 𝛾, where 𝛾 = 𝑘(휂 + ℎ) is the dimensionless 

free surface elevation from the bed. The term 휁 = 𝛾 − 𝐷  is a 

dimensionless free surface elevation measured from the reference line 

(the horizontal line passing through two points on the free surface at 

two phases 𝛽 = ±𝜋/2). The reference depth 𝐷 = 𝑘(휂𝑜 + ℎ) is the 

dimensionless distance from the bed to the reference line where 휂𝑜 =

휂(±𝜋/2).  Because the coordinate system is independent of the 

wavelength, it has several advantages, as presented by Shin (2023). 

The dimensionless quantity of a flow field 𝑓 is denoted by 𝑓 ̅ except 

for those defined separately, such as 𝑆 and 휃. Using the notation, the 

stream function is defined by 𝜓 = �̅� 𝜔/𝑘2 . The horizontal and 

vertical velocities are defined by 𝑢 = 𝐶�̅� and  𝑣 = 𝐶�̅�, respectively, 

where 𝐶 = 𝜔/𝑘 is the celerity. The vorticity is defined by 𝛺 = 𝜔�̅�. 

The pressure is defined by 𝑝 = 𝜌𝐶2�̅�, where 𝜌 is the water density. 

The dimensionless wave height (steepness) is defined by 𝑆 = 𝑘𝐻 . 

The linear steepness 휃 = 𝜔2𝐻/𝑔  (where 𝑔  is the gravity) is a 

constant for a particular wave. When ℎ → ∞ and 𝐻 → 0, 𝑆 → 휃, 

which gives the dispersion relation (𝜔2 = 𝑔𝑘) of deep water linear 

waves. The stream function to satisfy the incompressible Euler 

equations is as follows: 

 

�̅� = 𝛼 −
𝑐0 sinh〈0〉𝛼

〈0〉
+ ∑ 𝑐𝑛

sinh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
cos 𝑛𝛽

𝑁

𝑛=1

 (1) 

 

where 〈𝑛〉 ≝ √𝑛2 + 휀; 𝑁 is the series order; and 𝑐𝑛 are the Fourier 

coefficients. The first and second terms describe a current. On the other 

hand, the two terms can be deleted for an irrotational wave (휀 = 0). 

The vorticity is presented as follows: 

 

Ω̅ = ε {
𝑐0 sinh〈0〉𝛼

〈0〉
− ∑ 𝑐𝑛

sinh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
cos 𝑛𝛽

𝑁

𝑛=1

} (2) 
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This solution also contains irrotational waves, where the constant, 휀 

is referred to as the strength of vorticity because �̅� = 0 when ε = 0. 

When 휀 is non-positive, the vorticity has the same direction as the 

motion of the particles. The iso-stream and iso-vorticity lines can be 

calculated using Newton’s method in the Appendix. The free surface 

is an iso-vorticity line given by �̅�(𝛽, 𝛾) = 𝐶1휀 , where 𝐶1  is a 

constant. Substituting �̅�(𝛽, 𝛾) = 𝐶1휀 into Eq. (2), the wave profile is 

determined to satisfy the KFSBC (Kinematic free surface boundary 

condition) as follows:  

 

𝑐0(sinh〈0〉𝛾 − sinh〈0〉𝐷)

〈0〉
 

= ∑ 𝑐𝑛 {
sinh〈𝑛〉𝛾

cosh〈𝑛〉𝐷
cos 𝑛𝛽 − tanh〈𝑛〉𝐷 cos

𝑛𝜋

2
}

𝑁

𝑛=1

 

(3) 

 

The constant 𝐶1 is determined from the definition of the reference 

line in Fig. 1; that is, 𝛾(±𝜋/2) = 𝐷 . The profile is an implicit 

function that can be calculated using Newton’s method in the 

Appendix. When 휀 → 0, Eq. (3) yields the profile defined by Shin 

(2018). Moreover, the sea bed is an iso-vorticity line given by 

�̅�(𝛽, 0) = 0. Differentiating Eq. (1) with respect to 𝛼  and 𝛽, the 

horizontal velocity becomes the following. 

 

�̅� = 1 − 𝑐0 cosh〈0〉𝛼 + ∑〈𝑛〉𝑐𝑛

cosh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
cos 𝑛𝛽

𝑁

𝑛=1

 (4) 

 

The vertical velocity is as follows: 

 

�̅� = ∑ 𝑛𝑐𝑛

sinh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
sin 𝑛𝛽

𝑁

𝑛=1

 (5) 

 

Substituting Eqs. (1)–(5) to the Euler momentum equations, 

Bernoulli’s principle for rotational flow can be calculated as follows. 

 

�̅�2

2
+

𝑆𝛼

휃
+ �̅� = 𝑄 (6) 

 

where �̅�2 = �̅�2 − 휀(𝛼 − �̅�)2  , and 𝑄 is a constant. A mechanical 

analog to irrotational and rotational flows was depicted by considering 

a carnival Ferris wheel in Fig. 2.11 in Dean et al. (1984). While the 

irrotational motion of chairs involves rotating around the center of the 

Ferris wheel, the rotational motion of the chairs involves both 

revolving around the center of the Ferris wheel and rotating around 

their center. Therefore, the total kinetic energy of the rotational motion 

is represented by the sum of the revolving kinetic energy around the 

center of the Ferris wheel and the rotating kinetic energy around their 

center. Analogous to the Ferris wheel, the total kinetic energy of 

rotational flow is represented by �̅�2 = �̅�2 − 휀(𝛼 − �̅�)2, where the 

first term corresponds to the revolving kinetic energy around the center 

of the Ferris wheel, and the second term corresponds to the rotating 

kinetic energy around its center. When 휀 = 0 , �̅�2 = �̅�2 = (1 −

�̅�)2 + �̅�2, which is the kinetic energy for irrotational flow. In contrast 

to Baddour et al. (1998), 휀  is not positive because kinetic energy 

functions should be positive-definite functions. Therefore, let 휀 ≝

−𝜎2,  where σ  is a non-negative real number. Hence, 〈0〉 = 𝜎𝑖 . 

Substituting Eqs. (1), (4), and (5) into the relation, �̅�2 = �̅�2 −

휀(𝛼 − �̅�)2, the dynamic pressure (kinetic energy) �̅�2 is as follows: 

 

�̅�2 = 𝑐0
2 − 2 ∑ 𝛬0𝑛𝑐𝑛

𝑁

𝑛=1

+ ∑ 𝑐𝑛 { ∑ 𝛬𝑛𝑚𝑐𝑚

𝑁

𝑚=1

}

𝑁

𝑛=1

 (7) 

 

where 

 

𝛬0𝑛(𝛽, 𝛼) ≝
𝑐0 cos 𝑛𝛽

cosh〈𝑛〉𝐷
{〈𝑛〉 cosh〈0〉𝛼 cosh〈𝑛〉𝛼

− 〈0〉 sinh〈0〉𝛼 sinh〈𝑛〉𝛼} 

(8) 

 

and  
 

𝛬𝑛𝑚(𝛽, 𝛼) ≝ 𝑍1 𝑐𝑜𝑠ℎ(〈𝑛〉 + 〈𝑚〉)𝛼 𝑐𝑜𝑠(𝑛 − 𝑚)𝛽 

+𝑍2 cosh(〈𝑛〉 − 〈𝑚〉)𝛼 cos(𝑛 − 𝑚)𝛽 

+𝑍3 cosh(〈𝑛〉 + 〈𝑚〉)𝛼 cos(𝑛 + 𝑚)𝛽 

+𝑍4 cosh(〈𝑛〉 − 〈𝑚〉)𝛼 cos(𝑛 + 𝑚)𝛽 

(9) 

 

where 𝑍1 = (〈𝑛〉〈𝑚〉 + 𝑛𝑚 − 휀 )/4𝑊 ; 𝑍2 = (〈𝑛〉〈𝑚〉 − 𝑛𝑚 +

휀)/4𝑊 ; 𝑍3 = (〈𝑛〉〈𝑚〉 − 𝑛𝑚 − 휀)/4𝑊 ; 𝑍4 =
〈𝑛〉〈𝑚〉+𝑛𝑚+𝜀

4W
;  and 

W = cosh〈𝑛〉𝐷 cosh〈𝑚〉𝐷 . If Λ0𝑛  is the component of column 

vector {𝛬0𝑛} and 𝑐𝑛 is the component of the column vector {𝑐𝑛}, 

the second term on the right side in Eq. (7) becomes an inner product 

of the two vectors. Accordingly, 𝛬𝑛𝑚 can be considered a component 

of the square matrix [𝛬𝑛𝑚] in N-dimensional space. Therefore, the 

third term on the right side of Eq. (7) is presented as {𝑐𝑛}𝑡[𝛬𝑛𝑚]{𝑐𝑚}, 

where {𝑐𝑛}𝑡 is a row vector. This concept helps formulate numerical 

calculations in this study. Considering the average speed �̅�𝑏 over a 

wave period on the sea bed, the constant 𝑐0 is determined as follows: 

 

𝑐0 = 1 − �̅�𝑏 (10) 

 

For the average speed �̅�𝑠  over a wave period on still water, the 

strength of vorticity is as follows: 

 

𝜎 =
1

𝑘ℎ
cos−1 (

1 − �̅�𝑠

1 − �̅�𝑏

) for  |
1 − �̅�𝑠

1 − �̅�𝑏

| ≤ 1 (11) 

 

From Stokes’ breaking criterion, |�̅�𝑏| ≤ 1  and |�̅�𝑠| ≤ 1 . The 

Bernoulli’s constant Q is determined from the definition of the 

reference line (i.e., 𝛾(𝜋/2) = 𝐷 ) and the DFSBC (Dynamic free 

surface boundary condition), i.e., �̅�(𝜋/2, 𝐷) = 0 because the point 

(𝜋/2, 𝐷) is on the free surface. Therefore, the pressure field is  

 

�̅� = −
1

2
{�̅�2(𝛽, 𝛼) − �̅�2 (

𝜋

2
, 𝐷)} −

𝑆(𝛼 − 𝐷)

휃
 (12) 

 

By applying the DFSBC, i.e., �̅�(𝛽, 𝛾) = 0 on 𝛼 = 𝛾 to Eq. (12), 

the other wave profile can be determined as follows: 

 
𝑆휁

휃
= −

1

2
{�̅�2(𝛽, 𝛾) − �̅�2 (

𝜋

2
, 𝐷)} (13) 

 

The wave height condition is defined as 
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𝑆 = ζ(0) − ζ(π). (14) 

 

The water depth condition is defined as 

 

𝑘ℎ =
1

2𝜋
∫ 𝛾

𝜋

−𝜋

𝑑𝛽 (15) 

 

3. Newton’s Method for Coefficients and 

Steepness 
 

The solution contains N+2 unknown constants: N Fourier 

coefficients, 𝑐𝑛, steepness, 𝑆, and reference depth, 𝐷. Eqs. (3) and 

(13) present two wave profiles with implicit functions. The two wave 

profiles are even functions considering the coordinate system. The 

Fourier series of a periodic even function is presented as 𝑓(𝑥) =

∑ 𝑐𝑛 cos 𝑛𝑥∞
𝑛=0 , in −𝜋 ≤ 𝑥 ≤ 𝜋 . The coefficients are generally 

determined from the orthogonality of trigonometric functions. The 

method is inapplicable when 𝑓(𝑥)  is an implicit function, as 

expressed in Eqs. (3) and (13). The problem can be solved by 

converting the series to a set of algebraic equations, which are obtained 

by calculating the series at some phases instead of all phases. This is 

done by replacing the infinite series with a truncated series, i.e., 

∑ 𝑐𝑛 cos 𝑛𝑥𝑚
𝑁
𝑛=0 = 𝑓(𝑥𝑚) for m = 1, ... , N. There are N algebraic 

equations for calculating the coefficients, 𝑐𝑛, because cos 𝑛𝑥𝑚 and 

𝑓(𝑥𝑚) are known. Hence, there are a set of N equations, and Eqs. (3) 

and (13) are equal to each other at N+1 phases (Note that Eqs. (3) and 

(13) are already equal to each other at phase ±𝜋/2  because the 

integral constants were determined to satisfy the definition of the 

reference line) and two equations, i.e., Eqs. (14) and (15). Therefore, 

there are N+2 equations to determine the unknown constants.  

Referring to Eqs (3)–(5), the denominators are expressed as 

transcendental functions of the reference depth. When determining the 

reference depth using Newton's method in conjunction with the 

coefficients, it is necessary to calculate the partial derivative with 

respect to the reference depth. Furthermore, Eq. (15) only permits a 

numerical approach. This difficulty can be overcome by calculating the 

reference depth independently using the shooting method, assuming 

that the reference depth is known. Based on the assumption, Eq. (15) 

is independent of the other equations and will be calculated in the next 

chapter. In addition to this assumption, N parameters, 𝑋𝑚 , are 

introduced in this chapter to simplify the numerical formulation. 

Unlike Fenton's method, 𝑋𝑚  are merely parameters for calculating 

the coefficients and the steepness in this chapter. After determining the 

coefficients, 𝑋𝑚  are no longer used. Hence, the wave elevation is 

denoted with 𝑋𝑚 instead of 휁𝑚 in this chapter.  

When the wave profile 휁 and the reference depth 𝐷 are prescribed, 

it is possible to convert Eq. (3) into a set of linear equations for the 

coefficients. Because the wave profile is an even function, the phases 

𝛽𝑚(𝑚 = 1,2, … , 𝑁) are considered in the range 0 ≤ 𝛽𝑚 ≤ 𝜋 and 

𝛽𝑚 ≠ 𝜋/2 because the two wave profiles are already equal at phase 

𝛽 = 𝜋/2 . In addition, 𝛽1 = 0  and 𝛽𝑁 = 𝜋 . Denoting 휁(𝛽𝑚)  as 

𝑋𝑚, i.e., 𝑋𝑚 = 휁(𝛽𝑚), Eq. (3) is presented. 

 

𝐾𝑚𝑛𝑐𝑛 = 𝑌𝑚    (16) 

 

The summation convention is considered in Eq. (16). The repeated 

subscript “n” is a dummy subscript, whereas 𝐾𝑚𝑛 is a second-order 

tensor, and the terms 𝑐𝑛 and 𝑋𝑚 are vectors in N-dimensional space. 

From Eq. (3), the component of the tensor 𝐾𝑚𝑛 is presented as  

 

𝐾𝑚𝑛 =
sinh〈𝑛〉�̅�𝑚

cosh〈𝑛〉𝐷
cos 𝑛𝛽𝑚 − tanh〈𝑛〉𝐷 cos

𝑛𝜋

2
 

(17) 

 

where �̅�𝑚 = 𝑋𝑚 + 𝐷. Because 〈0〉 = 𝜎𝑖, the component of the first-

order tensor, 𝑌𝑚 is presented as 

 

𝑌𝑚 =
𝑐0{sin 𝜎�̅�𝑚 − sin 𝜎𝐷}

𝜎
  

(18) 

 

The summation convention is not applied when the component of a 

tensor is presented as in Eqs. (17) and (18). Using the inverse tensor 

𝐺𝑚𝑛  of the tensor 𝐾𝑚𝑛, the solution to Eq. (16) is determined easily 

as follows.  

 

𝑐𝑛 = 𝐺𝑛𝑚𝑌𝑚 (19) 

 

Eq. (13) is also evaluated at the same phase. A set of N nonlinear 

equations for calculating the N parameters 𝑋𝑛  is obtained by 

substituting Eq. (19) into Eq. (13) at the same phase because the wave 

height condition in Eq. (14) is expressed as 𝑆 = 𝑋1 − 𝑋𝑁  in this 

approach. For Newton’s method, the error vector 𝐸𝑚 is defined from 

Eq. (13) as follows: 

 

𝐸𝑝 ≝ −
𝑆𝑋𝑝

휃
+ 𝐴𝑝𝑛𝑐𝑛 −

1

2
𝐵𝑝𝑛𝑚𝑐𝑛𝑐𝑚 

(20) 

 

From Eqs. (8) and (9), the second-order tensor 𝐴𝑝𝑛 and the third-

order tensor 𝐵𝑝𝑛𝑚 are defined as  

 

𝐴𝑝𝑛 ≝ 𝛬0𝑛(𝛽𝑝, �̅�𝑝) − 𝛬0𝑛 (
𝜋

2
, 𝐷) (21) 

 

𝐵𝑝𝑛𝑚 ≝ 𝛬𝑛𝑚(𝛽𝑝, �̅�𝑝) − 𝛬𝑛𝑚 (
𝜋

2
, 𝐷) (22) 

 

Substituting Eq. (19) into Eq. (20), 𝐸𝑝 = 0 gives a set of nonlinear 

equations for calculating the parameters, 𝑋𝑞 . Therefore, unlike 

Fenton’s method (Rienecker and Fenton, 1981; Fenton, 1988), the set 

of N nonlinear equations is solved using Newton’s method in this study. 

Therefore, when using the same series order, the number of unknown 

constants is less than half of that in Fenton’s method.  

Denoting partial derivatives of a tensor by making use of commas 

and indices as 
𝜕( )

𝜕𝑋𝑞
= ( ),𝑞   and expanding Eq. (20) as a Taylor 

series about 𝑋𝑞  points in terms of 𝛥𝑋𝑞  and ignoring higher-order 

terms, the following set of linear equations is obtained: 

 

𝐸𝑝,𝑞𝛥𝑋𝑞 = −𝐸𝑝 (23) 

 

Because 𝛥𝑋𝑞
(𝑟)

= 𝑋𝑞
(𝑟+1)

− 𝑋𝑞
(𝑟)

, the solution in the next step is 

 

𝑋𝑞
(𝑟+1)

= 𝑋𝑞
(𝑟)

+ 𝛥𝑋𝑞
(𝑟)

 (24) 

 

The superscript (𝑟) means the step of Newton’s method. It is clear 

that all the steps are rth in all equations except Eq. (24). Thus, for the 



JangRyong Shin 260 

simplification of equations, the superscript (𝑟) was omitted in all the 

equations except Eq. (24). Differentiating Eq. (20) with respect to 𝑋𝑞, 

the partial derivative 𝐸𝑝,𝑞 of the error vector is 

 

𝐸𝑝,𝑞 = −
𝑆,𝑞𝑋𝑝

휃
−

𝑆𝛿𝑝𝑞

휃
+ 𝐴𝑝𝑛,𝑞𝑐𝑛 + 𝐴𝑝𝑛𝑐𝑛,𝑞 

−
1

2
𝐵𝑝𝑛𝑚,𝑞𝑐𝑛𝑐𝑚 − 𝐵𝑝𝑛𝑚𝑐𝑛,𝑞𝑐𝑚. 

(25) 

 

Note that 𝑐𝑛,𝑞𝑐𝑚 = 𝑐𝑛𝑐𝑚,𝑞. Because 𝑆 = 𝑋1 − 𝑋𝑁,  

 

𝑆,𝑞 = {

1  for 𝑞 = 1
0  for 𝑞 ≠ 1 𝑜𝑟 𝑁

−1 for 𝑞 = 𝑁
}. 

(26) 

 

Differentiating Eq. (16) with respect to 𝑋𝑝 results in 

 

𝐾𝑚𝑛,𝑝𝑐𝑛 + 𝐾𝑚𝑛𝑐𝑛,𝑝 = 𝑌𝑚,𝑝. (27) 

 

Multiplying Eq. (27) by the tensor 𝐺𝑖𝑚, the partial derivative of the 

coefficient is determined as follows. 

 

𝑐𝑖,𝑝 = 𝐺𝑖𝑚(𝑌𝑚,𝑝 − 𝐾𝑚𝑛,𝑝𝑐𝑛), (28) 

 

where 𝐺𝑖𝑚𝐾𝑚𝑛 = 𝛿𝑖𝑛  and 𝛿𝑖𝑛𝑐𝑛,𝑝 = 𝑐𝑖,𝑝  and 𝛿𝑖𝑛  is the second-

order isotropic tensor. Differentiating Eq. (17) with respect to 𝑋𝑝, the 

components of the third-order tensor 𝐾𝑚𝑛,𝑝 are presented as  

 

𝐾𝑚𝑛,𝑝 = δ𝑚𝑝

〈𝑛〉 cosh〈𝑛〉�̅�𝑚

cosh〈𝑛〉𝐷
cos 𝑛𝛽𝑚 

(29) 

 

Differentiating Eq. (18) with respect to 𝑋𝑝, the component of the 

second-order tensor 𝑌𝑚,𝑝 is presented as 

 

𝑌𝑚,𝑝 = 𝛿𝑚𝑝 𝑐0 cos 𝜎�̅�𝑚 . (30) 

 

Differentiating Eq. (21) with respect to 𝑋𝑞, the component of the 

third-order tensor 𝐴𝑝𝑛,𝑞 is expressed as follows: 

 

𝐴𝑝𝑛,𝑞 =
𝛿𝑝𝑞𝑛2 sinh〈𝑛〉�̅�𝑝 cos 𝜎�̅�𝑝 cos 𝑛𝛽𝑝

cosh〈𝑛〉𝐷
 

(31) 

 

Differentiating Eq. (22) with respect to 𝑋𝑞, the component of the 

forth-order tensor 𝐵𝑝𝑛𝑚,𝑞 is  

 

𝐵𝑝𝑛𝑚,𝑞 = 𝛿𝑝𝑞[ Z1
∗ sinh(〈𝑛〉 + 〈𝑚〉)�̅�𝑝 cos(𝑛 − 𝑚)𝛽𝑝  

+Z2
∗ sinh(〈𝑛〉 − 〈𝑚〉)�̅�𝑝 cos(𝑛 − 𝑚)𝛽𝑝 

+𝑍3
∗ sinh(〈𝑛〉 + 〈𝑚〉)�̅�𝑝 cos(𝑛 + 𝑚)𝛽𝑝 

+Z4
∗ sinh(〈𝑛〉 − 〈𝑚〉)�̅�𝑝 cos(𝑛 + 𝑚)𝛽𝑝]. 

(32) 

 

where 𝑍1
∗ = 𝑍1(〈𝑛〉 + 〈𝑚〉) ; 𝑍2

∗ = 𝑍2(〈𝑛〉 − 〈𝑚〉) ; 𝑍3
∗ =

𝑍3(〈𝑛〉 + 〈𝑚〉); and 𝑍4
∗ = 𝑍4(〈𝑛〉 − 〈𝑚〉).  

 

Based on the assumption that the reference depth is known, Eq. (16) 

is linear and decoupled from Eq. (20), unlike in Fenton’s method 

(Rienecker and Fenton, 1981; Fenton, 1988). Dividing the inner 

product of the error vector, 𝐸𝑚 by N, the mean squared error (MSE) 

in the DFSBC is defined as  

 

MSE = √
𝐸𝑚𝐸𝑚

𝑁
   

(33) 

 

The MSE is used as a criterion for determining the convergence of 

the Newton method.  

Shin (2019) was used as the first step, 𝑋𝑚
(0)

 in Newton’s method. 

The author reported that the real part of a geometric series, 𝑓(𝛽) with 

a common ratio, 𝜆𝑒𝑖𝛽  (where “i” is the imaginary unit), closely 

resembles the shape of a water wave. A reliable approximation of the 

profile of a water wave can be achieved by shifting the function down 

by "𝑓(𝜋/2)" to align with the reference line in Fig. 1, normalizing the 

result by its height and multiplying the result by the actual wave 

amplitude " 𝑆/2 " to meet the wave height condition, as reported by 

Shin (2019).  

The profile satisfies the definition of the reference depth, i.e., 

휁(±𝜋/2) = 0, the wave height condition in Eq. (14), and the water 

depth condition in Eq. (15). Replacing 휁 with 𝑋𝑚
(0)

, the profile at the 

phase 𝛽𝑚 is presented as follows: 

 

𝑋𝑚
(0)

=
𝑆(0)

2

1 − 𝜆2

𝜆
(

1 − 𝜆 cos 𝛽𝑚

1 + 𝜆2 − 2𝜆 cos 𝛽𝑚
−

1

1 + 𝜆2
) (34) 

 

where the steepness 𝑆(0) and the shape factor 𝜆 are presented in 

Shin (2019), and (0) means the first step in Newton’s method. The 

function is much simpler than the other nonlinear waves because it 

contains only two parameters, i.e., wave steepness, 𝑆 and the shape 

factor, 𝜆. When the shape factor approaches 0, it becomes an Airy 

wave. When the shape factor approaches 0.5, it becomes a fifth-order 

Stokes wave. When the shape factor approaches 1, it becomes a 

Solitary wave. The shape factor is a positive real number less than 1. 

Because the function was derived independently from the Euler 

equations, the two parameters were determined to minimize the error 

in two boundary conditions on the free surface using a variational 

method. Because Eq. (34) is very close to the complete solution, 

Newton’s method rapidly and converges for all waves. 

 

4. Shooting Method for Reference Depth 
 

In contrast to the assumption considered in Ch. 3, the reference depth 

is closely linked to the coefficients and is unknown. Therefore, while 

maintaining the validity of the method presented in Ch. 3, the shooting 

method is suitable for determining the reference depth. The reference 

depth is adjusted until the calculated water depth from the water depth 

condition matches the actual value using the shooting method. The 

secant method is used as a root-finding algorithm. In each step of the 

secant method, substituting the calculated coefficients and the 

prescribed reference depth into Eqs. (A1)–(A4), the wave elevations 

휁𝑖
(𝑞)

 are calculated with highly dense interval using Newton’s method 

in the Appendix. The integral is numerically calculated by substituting 

the results into Eq. (15) as follows: 
 

(𝑘휂0)(𝑞) = −
1

2𝑀
 ∑(휁𝑖

(𝑞)
+ 휁𝑖+1

(𝑞)
)

𝑀

𝑖=1

 

(35) 
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where (𝑞) stands for the q’th step of the secant method, and 휁𝑖 =

휁(𝛽𝑖). 휁 is an even function. Hence, 𝛽1 = 0; 𝛽𝑖 = (𝑖 − 1)𝜋/𝑀; and 

𝛽𝑀+1 = 𝜋. In Fenton (1988), Eq. (35) must be calculated using only 

N data of 𝑋𝑖  because Eq. (35) is coupled to the other equations. 

Therefore, M = N in Fenton (1988). On the other hand, M is 

independent of 𝑁 in this study. Eq. (35) can be calculated accurately 

compared to Fenton (1988) because M can be freely increased in this 

study. The water depth is calculated as follows:  

 

ℎ(𝑞) =
1

𝑘
{𝐷(𝑞) − (𝑘휂0)(𝑞)} 

(36) 

 

The reference depth is calculated using the secant method as 

follows. 

 

𝐷 = lim
𝑞→∞

𝐷(𝑞+1) (37) 

 

where 

 

𝐷(𝑞+1) = 𝐷(𝑞−1) +  
𝐷(𝑞) − 𝐷(𝑞−1)

ℎ(𝑞) − ℎ(𝑞−1)
{ℎ − ℎ(𝑞−1)}  

(38) 

 

where 𝐷(0) is determined using the regression result in Shin (2019), 

and ℎ is the actual water depth. The actual value is in the vicinity of 

𝐷(0). Hence, 𝐷(1)is selected with a value close to 𝐷(0), e.g., 𝐷(1) =

1.001𝐷(0). For each step, the error in the water depth is as follows: 

 

𝐸𝑟𝑟𝑜𝑟(𝑞)  =
|ℎ − ℎ(𝑞)|

ℎ
 

(39) 

 

5. Calculation Procedure and Results 
 

5.1 Calculation Procedure 

Fig. 2 presents a flowchart. While there is only one do-loop in 

Fenton’s method, the chart comprises three do-loops. The outer do-

loop implements the secant method for calculating the reference 

depth, as described in Ch. 4. The first inner do-loop implements the 

Newton method for calculating the coefficients and steepness, as 

described in Ch. 3. The other inner do-loop implements Newton’s 

method for calculating the wave profile, as described in the 

Appendix. 

Initial approximations of the shape factor, steepness, and reference 

depth are first calculated by substituting the period, height, and depth 

into the regression analysis results presented by Shin (2019). The 

initial approximations of the wave profile are calculated using Eq. 

(34). 

The first inner do-loop is performed. The coefficients, 𝑐𝑛
(𝑟,𝑞)

, are 

calculated using Eq. (19), where “r” represents the step of the Newton 

method in Ch. 3 and “𝑞” represents the step of the secant method in 

Ch. 4. Substituting 𝑐𝑛
(𝑟,𝑞)

 and 𝐷(𝑞) into Eqs. (20) and (25), Δ𝑋𝑖
(𝑟,𝑞)

 

are calculated using Eq. (23) and then 𝑋𝑖
(𝑟+1,𝑞)

 are calculated using 

Eq. (24). The MSE is calculated with Eq. (33). If the MSE is greater 

than the tolerance, 𝑋𝑖
(𝑟,𝑞)

 is replaced with 𝑋𝑖
(𝑟+1,𝑞)

. The do-loop 

continues until Newton’s method converges to the complete solution 

within the specified tolerance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 Calculation procedure 

 

The second inner do-loop is then performed to calculate the free 

surface elevations at more phases than those considered in the first 

inner do-loop. The elevations, 휁𝑖
(𝑟+1,𝑞)

, are calculated using Newton’s 

method in the Appendix, where “𝑟” represents the step of Newton’s 

method.  

By substituting 휁𝑖
(𝑞)

(: 𝑙𝑖𝑚
𝑟→∞

휁𝑖
(𝑟+1,𝑞)

)  into Eq. (35), the water depth 

ℎ(𝑞)  is calculated using Eq. (36). The reference depth  𝐷(𝑞+1)  is 

calculated using Eq. (38). Replacing 𝐷(𝑞) with 𝐷(𝑞+1), the outer do-

loop should be repeated until the calculated depth converges to the 

actual depth. The first step solution of Newton’s method in the q+1 

step of the secant method, 𝑋𝑚
(0,𝑞+1)

 is determined using the 

converged value, 𝑋𝑚
(∞,𝑞)

≝ lim
𝑟→∞

𝑋𝑚
(𝑟,𝑞)

 in the q step of the secant 

method, i.e., 𝑋𝑚
(0,𝑞+1)

= 𝑋𝑚
(∞,𝑞)

. Because 𝐷(0)  is accurate, the 

secant method converges within three steps to the acceptable value 

whose error is less than 10−4 percent. The outputs are the coefficients, 

the reference depth, and the steepness. 

 

YES 

YES 

YES 

Outputs: 𝑐𝑛, D, S 

Calculate D(0), 𝜆 and 𝑆(0) 

Calculate 𝑋𝑚
(0,0)

 

Calculate 𝑐𝑛
(𝑗,𝑞)

 

Check 
1

𝑁
∑ {𝐸𝑚

(𝑗)
}

2
𝑁
𝑚=1 ≤ 𝑇𝑜𝑙 

Calculate wave profile 휁𝑝
(𝑟+1,𝑞)

 

Calculate water depth ℎ(𝑞) 

Check ቚ
ℎ∗−ℎ(𝑞)

ℎ∗
ቚ ≤ 𝑇𝑜𝑙. 

Calculate 𝑋𝑖
(𝑗+1,𝑞)

 

Check 
1

𝑀+1
∑ {𝑓𝑚

(𝑟)
}

2
𝑀
𝑚=1 ≤ 𝑇𝑜𝑙 

Inputs: H, T, ℎ∗ 

Replace 

𝑋𝑖
(𝑗,𝑞)

 with 

𝑋𝑖
(𝑗+1,𝑞)

 

Replace 𝐷(𝑞) 

with 𝐷(𝑞+1) 
And  
Replace 

𝐷(𝑞−1) 

 with 𝐷(𝑞) 

Replace 휁𝑝
(𝑟,𝑞)

 

with 휁𝑝
(𝑟+1,𝑞)

 

NO 

NO 

 

NO 
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5.2 Application Range of this Study 

The coefficients and wave properties are functions of two variables: 

the reference depth and the linear steepness. The functions are 

presented with closed-form solutions in Shin (2019), which are the 

regression results determined using numerically calculated data for 

2091 waves, as shown below. The domain of the functions is {(θ, D) | 

0 ≤ θ < 1 and 0 < D}. A subset of the domain, {(θ, D) | 0 ≤ θ < 1 and 0 

< D < 5}, was considered instead of the entire domain because waves 

are similar to deep water waves when D > 5. Seventeen cases of the 

reference depth were considered by dividing the domain by D = 0.1, 

0.15, 0.2, ..., 1.0, 1.2, 1.5, 2, 3, 4, and 5. For each reference depth, the 

linear steepness was considered from 0 to 0.98 at 0.01 intervals, from 

0.98 to 0.989 at 0.001 intervals, from 0.989 to 0.9899 at 0.0001 

intervals, and from 0.9899 to 0.98997 at 0.00001 intervals, resulting in 

123 cases of linear steepness. Therefore, 17 × 123 = 2091 irrotational 

waves were calculated with N = 35 and M = 180. The limits can be 

determined easily because the Newton method presented in the 

Appendix diverges at the crest when the steepness reaches its limit. 

These limits were represented by 17 red solid circle symbols in Fig. 3, 

which are calculated with 𝐷 = 0.1, 0.15, 0.2, ... , 1.0, 1.2, 1.5, 2, 3, 4, 

and 5 in sequence from left to right. The solid curve is the regression 

analysis result determined using the 17 data. As shown in Fig. 3, the 

breaking limit is in good accordance with the Miche formula. Because 

the 2091 waves are dimensionless waves, they represent all waves 

below the breaking limit. Therefore, this study confirms stable 

convergence characteristics for all water waves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Application range of this study cited from Shin (2019) 

 

5.3 Water Particle Velocities Under the Crest 

The eight waves considered in Le Méhauté  et al. (1968) were 

calculated. Fig. 3 and Table 1 present the waves with solid diamond 

symbols. The results were compared with experimental data in Fig. 2 

by Shin (2022). Fig. 4 shows the wave (h) during the eight waves. 

Referring to Fig. 2 of Shin (2022), the other waves give the same 

pattern, as shown in Fig. 4. The irrotational results were calculated with 

휀 = 0. The regression analysis results were calculated by Shin (2019). 

Rienecker and Fenton (1981) also calculated the waves, as shown in 

Fig. 2 of that work. The waves were also calculated by Fenton (1990), 

and the results are shown in Fig. 3(c) of that work. The cnoidal theory  

Table 1 Eight waves considered in Le Méhauté et al. (1968) 

Wave (a) (b) (c) (d) 

𝐻/ℎ 0.434 0.420 0.389 0.433 

𝑇√𝑔/ℎ 8.590 15.870 22.490 27.240 

Wave (e) (f) (g) (h) 

𝐻/ℎ 0.499 0.522 0.493 0.548 

𝑇√𝑔/ℎ 8.590 15.870 22.502 27.270 

 

 

 

 

 

 

 

Fig. 4 Water particle velocities under the crest of the wave (h) 

 

is the new cnoidal theory by Fenton (1990), which closely agrees with 

the Fourier approximation by Fenton (1988). Tao et al. (2001) also 

calculated the waves; the results are shown in Fig. 2 of that work. HAM 

(Homotopy analysis method) by Tao et al. (2001) results closely agree 

with the Fourier approximation reported by Rienceker et al. (1981). 

Therefore, the Fourier approximation and HAM results are not 

presented in Fig. 4. This study agrees with the experimental data, 

unlike those obtained using HAM or Fenton's method.  

 

5.4 Dispersion Relation 

Table 3 of Tao et al. (2007) provides a detailed comparison of the 

HAM solutions of waves in finite water depth and the results of 

Cokelet (1977) and Rienecker and Fenton (1981). The results are given 

in terms of the non-dimensional phase speed squared 𝑘𝐶2/𝑔  at 

various values of 𝐻/ℎ, for a constant value of exp(−𝑘𝑅/𝐶)  =  0.5 

(R is the unit span denoting the total volume rate of flow underneath 

the steady wave per unit length in a direction normal to the x, z plane), 

corresponding to a wavelength to water depth ratio of 𝐿/ℎ ≈  9 (Tao 

et al., 2007). Table 1 of Rienecker and Fenton (1981) presents the same 

comparison between the solutions of Rienecker and Fenton (1981) for 

N = 16, 32, and 64, the results of Cokelet (1977), and the results of 

Vanden-Broeck & Schwarts.  

The non-dimensional phase 𝑘𝐶2/𝑔  is presented with physical 

quantities defined in this study as follows: 

 

𝑘𝐶2

𝑔
=

𝑘

𝑔
(

𝜔

𝑘
)

2

=
𝜔2

𝑔𝑘
=

휃

𝑘𝐻
=

휃

𝑆
  (40) 

 

𝐻/ℎ is also presented with physical quantities defined in this study. 

 

𝐻

ℎ
=

𝑘𝐻

𝑘ℎ
=

𝑆

𝑘ℎ
 (41) 

 

𝑘ℎ = 2𝜋/9 in Eq. (41) because 𝐿/ℎ ≈  9. Therefore, the 

comparison shows the relationship between steepness, S, and linear  
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Le Méhauté et al., (1968)

New cnoidal theory by Fenton(1990)

Regression analysis by Shin (2019)

Τu gh
Τ

α
k

h

5E-05

0.0005

0.005

0.05

0.0004 0.004 0.04

ℎ

𝑔𝑇2

𝐻

𝑔𝑇2

The limiting height of 
Airy waves

𝐻𝐿2

ℎ3
= 26

𝐻/ℎ = 0.78

Stokes
theory

Cnoidal

(a)
(e)

(b)

(f)

(c)

(g)

(d)

(h)

𝐻/𝐿 = 0.142

휃𝑏 = 0.8571 tanh 0.9048
𝜔2ℎ

𝑔



Numerical Method for Calculating Fourier Coefficients and Properties of Water Waves with Shear Current and Vorticity in Finite Depth 263 

Table 2 Dispersion relation by Rienecker and Fenton (1981) 

𝑘𝐶2/𝑔 𝐻/ℎ 휃 𝑆 

0.1729974  0.615059  0.074284 0.120775 

0.2526308  0.631112  0.111309 0.176370 

0.3802643  0.666501  0.176939 0.265475 

0.4944549  0.706443  0.243860 0.345195 

0.6024470  0.748230  0.314696 0.420587 

0.6512510  0.764403  0.347543 0.454659 

0.6721430  0.767760  0.360267 0.469244 

0.6832000  0.767030  0.365845 0.476964 

0.6908000  0.763000  0.367972 0.482269 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Dispersion relation for irrotational waves in the reference depths, 

D = 0.1, 0.15, 0.2, ... , 1.0, 1.2, 1.5, 2, and ∞ in sequence from 

left to right 

 

steepness, 휃  for the relative water depth, 𝑘ℎ = 2𝜋/9. Hence, the 

comparison shows the dispersion relation of waves in a finite water 

depth, 𝑘ℎ = 2𝜋/9. Table 2 lists the relation. The data in the first and 

second columns were cited from Rienecker and Fenton (1981), which 

are the results calculated using N = 64. The data in the fourth column 

was obtained by multiplying the data in the second column by 2π/9, as 

stated in Eq. (41). The data in the third column was obtained by 

multiplying the data in the first column by the data in the fourth column, 

as stated in Eq. (40). Shin (2018, 2019) also calculated the relation for 

various water depths, 𝐷 = 0.1, 0.15, 0.2, ... , 1.0, 1.2, 1.5, 2, and ∞. 

For a given reference depth, the linear steepness 휃 was considered 

with a highly dense interval from 0 to the application limit of this study. 

Fig. 5 presents the calculation results. The 15 curves are the results 

calculated with D = 0.1, 0.15, 0.2, ... , 1.0, 1.2, 1.5, 2, and ∞  in 

sequence from left to right. The peaks of each curve represent the limit 

of wave breaking. The nine data in Table 2 are also presented with solid 

circles in Fig. 5, which agree with the curve for D = 0.7. The small 

difference results from the difference between 𝑘ℎ = 2𝜋/9 and D = 

0.7. The relative depth for D = 0.7, is presented as 𝑘ℎ = 𝐷 − 𝑘휂0 =

0.7 − 𝑘휂0 > 2𝜋/9. because 𝐷 = 𝑘ℎ + 𝑘휂0  and kη0  is negative. 

Therefore, the D = 0.7 curve lies slightly to the right of the eight data 

because 𝑘휂0 is very small. 

 

5.5 Error Check of this Study 

The numerical method focuses on minimizing the errors in the 

DFSBC defined in Eq. (20) and the water depth conditions defined in 

Eq. (15). The convergence of this study according to the series order 

was analyzed by calculating the eight waves considered in Le Méhauté 

et al. (1968) using N = 8, 10, 16, and 35. Fig. 6 presents the calculated 

wave profiles for the waves. The abscissa represents the phase 𝛽 =

𝑘𝑥 − 𝜔𝑡 in −180o ≤ 𝛽 ≤ 180o, while the ordinate represents the 

dimensionless elevation, 𝑘휂. The errors are summarized in Tables 3 

and 4. The first step is the result of Shin (2019). Table 3 lists the error 

of Shin (2019). There are three steps for calculating the water depth 

condition using the secant method and three steps for the Newton 

method at each secant step. Therefore, there are 10 steps; Table 4 

presents the errors for step 10. The blanks indicate that they are 

unsuitable. The series order, N = 8, is unsuitable for waves (c) and (d), 

and the series order, N = 10, is unsuitable for wave (d) because they do 

not satisfy the condition for regular waves. Hence, there is no local 

extrema between the crest and the trough in a regular wave. The deeper 

the water depth and the lower the wave height, the smaller the number 

of series orders required. If the series order is increased beyond the 

optimal number, the convergence of this study decreases, as presented 

by Shin (2023). Even for very long waves, the convergence is very 

stable, unlike other methods. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Wave profiles (The legend was arranged in descending order of 

the crest height. The wave with the highest crest is wave (e), and the wave 

with the lowest crest is wave (d).) 

 

Table 3 Errors of the first step 

Wave Root mean squire error in the DFSBC (%) 

N = 8 N = 10 N = 16 N = 35 

a 2.30E-04 2.31E-04 2.31E-04 2.31E-04 

b 4.03E-03 4.00E-03 4.00E-03 4.00E-03 

c  1.19E-03 1.18E-03 1.18E-03 

d   1.18E-03 1.19E-03 

e 1.14E-03 1.14E-03 1.14E-03 1.14E-03 

f 3.66E-03 3.57E-03 3.55E-03 3.55E-03 

g  1.91E-03 1.57E-03 1.58E-03 

h   1.68E-03 1.77E-03 

Wave Relative error in the water depth condition (%) 

N = 8 N = 10 N = 16 N = 35 

a 1.35E-04 5.50E-07 9.45E-11 2.73E-12 

b -3.32E-01 −3.30E-01 −3.29E-01 −3.29E-01 

c  5.54E-03 −1.57E-05 −1.76E-08 

d   −8.19E-04 3.32E-06 

e 2.79E-04 −2.74E-06 7.34E-10 2.62E-11 

f -1.05E-02 −5.16E-03 1.36E-05 −9.90E-12 

g  2.40E-02 −6.74E-04 −2.79E-07 

h   −8.60E-03 4.36E-05 
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Table 4 Errors of the step 10 

Wave Root mean squire error in the DFSBC (%) 

N = 8 N = 10 N = 16 N = 35 

a 1.78E-09 2.88E-14 8.27E-20 1.02E-21 

b 5.19E-07 2.41E-07 6.85E-12 3.62E-25 

c  5.02E-06 8.41E-10 1.78E-19 

d   6.11E-08 3.11E-15 

e 2.37E-08 6.18E-11 2.69E-15 8.91E-21 

f 1.44E-05 4.17E-07 7.85E-10 3.28E-20 

g  1.01E-04 6.97E-09 1.83E-16 

h   3.63E-08 1.19E-12 

Wave Relative error in the water depth condition (%) 

N = 8 N = 10 N = 16 N = 35 

a 9.60E-05 9.59E-05 9.60E-05 9.60E-05 

b 2.12E-04 2.25E-04 2.09E-04 2.09E-04 

c  2.11E-04 4.20E-04 4.20E-04 

d   2.75E-05 2.68E-05 

e 1.54E-05 1.51E-05 1.51E-05 1.51E-05 

f 1.57E-04 7.80E-05 9.23E-05 9.26E-05 

g  2.18E-05 4.08E-04 4.05E-04 

h   9.40E-05 8.56E-05 

 

6. Conclusions 
 

This paper reported a numerical method to calculate the Fourier 

coefficient, steepness, and reference depth parameter. The method is 

much simpler than Fenton’s method or HAM. The partial derivatives 

with respect to wavelength and reference depth, as well as certain 

parameters, were eliminated utilizing a dimensionless coordinate 

system. The water depth condition was calculated independently using 

the shooting method in this study.  
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Appendix 

 
Newton’s Method for the Wave Profile 

Note that the coefficient 𝑐𝑛 and the reference depth 𝐷 are known 

in this Appendix. An implicit function 𝑓(𝛽, 휁) = 0  can be 

considered as an equation with respect to the dependent variable ζ 

because the independent variable β is known. Thus, using Newton’s 

method, the explicit representation of the function is  

 

휁(𝛽) = lim
𝑟→∞

휁(𝑟+1)(𝛽) (A1) 

 

where (𝑟) stands for the step of Newton’s method in this Appendix 

and 

 

휁(𝑟+1)(𝛽) = 휁(𝑟)(𝛽) −
𝑓(𝛽, 휁(𝑟))

𝑓′(𝛽, 휁(𝑟))
 

(A2) 

 

where 𝑓(𝛽, 휁) is defined as follows using Eq. (3): 
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𝑓(𝛽, 휁) = − 
𝑐0(sin 𝜎𝛾 − sin 𝜎𝐷)

𝜎
 

(A3) 

+ ∑ 𝑐𝑛 {
sinh〈𝑛〉𝛾

cosh〈𝑛〉𝐷
cos 𝑛𝛽 − tanh〈𝑛〉𝐷 cos

𝑛𝜋

2
}

𝑁

𝑛=1

 

 

Because 0 ≤ |휁| < 1 for all waves, the first step solution 휁(1) is 

calculated with the power series expansion of 𝑓 in 휁 and ignoring 

the higher order terms than the second order. As 𝑓(𝛽, 휁) = 0, the 

power series expansion is a quadratic equation with respect to 휁. Then 

we have 

 

휁(1)

=
−𝑓′(𝛽, 0) − √{𝑓′(𝛽, 0)}2 − 2{𝑓′′(𝛽, 0)}{𝑓(𝛽, 0)}

𝑓′′(𝛽, 0)
 

(A4) 

 

The other root of the quadratic equation is trivial. Eq. (A4) has the limit 

that is determined with the discriminant of the quadratic equation. On the 

other hand, the limit is greater than the wave-breaking limit. Therefore, 

Eq. (A4) is valid for all waves. Iso-streamlines and iso-vorticity lines are 

calculated by applying the method presented in this Appendix to Eq. (1) 

and Eq. (2), respectively. An iso-streamline for the specified value of 

�̅� = constant can be obtained by applying Eq. (A5) to the Newton 

method instead of Eq. (A3) and replacing 휁 with α.  

 

𝑓(𝛽, 𝛼) = −�̅� + 𝛼 −
𝑐0 sinh〈0〉𝛼

〈0〉

+ ∑ 𝑐𝑛

sinh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
cos 𝑛𝛽

𝑁

𝑛=1

 

(A5) 

 

The iso-vorticity line for the specified value of �̅� = constant can 

also be obtained by applying Eq. (A6) to the Newton method instead 

of Eq. (A3) and replacing 휁 with α. 

 

𝑓(𝛽, 𝛼) = −�̅� + 휀 {
𝑐0 sinh〈0〉𝛼

〈0〉

− ∑ 𝑐𝑛

sinh〈𝑛〉𝛼

cosh〈𝑛〉𝐷
cos 𝑛𝛽

𝑁

𝑛=1

} 

(A6) 
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