• Title/Summary/Keyword: Newton Iteration

Search Result 180, Processing Time 0.022 seconds

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF

A NEW LIMITED MEMORY QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Moghrabi, Issam A.R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 2003
  • The main concern of this paper is to develop a new class of quasi-newton methods. These methods are intended for use whenever memory space is a major concern and, hence, they are usually referred to as limited memory methods. The methods developed in this work are sensitive to the choice of the memory parameter ${\eta}$ that defines the amount of past information stored within the Hessian (or its inverse) approximation, at each iteration. The results of the numerical experiments made, compared to different choices of these parameters, indicate that these methods improve the performance of limited memory quasi-Newton methods.

  • PDF

A Study on the Numerical Methodologies of Hydroelasticity Analysis for Ship Springing Problem (스프링잉 응답을 위한 유탄성 해석의 수치기법에 대한 연구)

  • Kim, Yoo-Il;Kim, Kyong-Hwan;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.232-248
    • /
    • 2009
  • Numerical methodology to solve ship springing problem, which is basically fluid-structure interaction problem, was explored in this study. Solution of this hydroelasticity problem was sought by coupling higher order B-spline Rankine panel method and finite element method in time domain, each of which is introduced for fluid and structure domain respectively. Even though varieties of different combinations in terms of numerical scheme are possible and have been tried by many researchers to solve the problem, no systematic study regarding the characteristics of each scheme has been done so far. Here, extensive case studies have been done on the numerical schemes especially focusing on the iteration method, FE analysis of beam-like structure, handling of forward speed problem and so on. Two different iteration scheme, Newton style one and fixed point iteration, were tried in this study and results were compared between the two. For the solution of the FE-based equation of motion, direct integration and modal superposition method were compared with each other from the viewpoint of its efficiency and accuracy. Finally, calculation of second derivative of basis potential, which is difficult to obtain with accuracy within grid-based method like BEM was discussed.

A MESH INDEPENDENCE PRINCIPLE FOR PERTURBED NEWTON-LIKE METHODS AND THEIR DISCRETIZATIONS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.139-159
    • /
    • 2000
  • In this manuscript we study perturbed Newton-like methods for the solution of nonlinear operator equations in a Banach space and their discretized versions in connection with the mesh independence principle. This principle asserts that the behavior of the discretized process is asymptotically the same as that for the original iteration and consequently, the number of steps required by the two processes to converge to within a given tolerance is essentially the same. So far this result has been proved by others using Newton's method for certain classes of boundary value problems and even more generally by considering a Lipschitz uniform discretization. In some of our earlierpapers we extend these results to include Newton-like methods under more general conditions. However, all previous results assume that the iterates can be computed exactly. This is mot true in general. That in why we use perturbed Newton-like methods and even more general conditions. Our results, on the one hand, extend, and on the other hand, make more practical and applicable all previous results.

Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method (Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화)

  • Choi Chang-Soon;Lee Jin-Yong;Kim Young-Lok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.15-20
    • /
    • 2006
  • A Newton-Raphson Method for table driven algorithm is presented in this paper. We concentrate the approximation of square root by using Newton-Raphson method. We confirm that this method has advantages of accurate and fast processing with optimized initial point. Hence the selection of the fitted initial points used in approximation of Newton-Raphson algorithm is important issue. This paper proposes that log scale based on geometric wean is most profitable initial point. It shows that the proposed method givemore accurate results with faster processing speed.

New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness (강성등가하중을 이용한 새로운 비선형해석 알고리즘)

  • Kim, Yeong-Min;Kim, Chee-Kyeong;Kim, Tae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.731-742
    • /
    • 2007
  • This paper presents a new nonlinear analysis algorithm, that is, adaptive Newton-Raphson iteration method, The presented algorithm is based on the existing Newton-Raphson method, and the concept of it can be summarized as calculating the equivalent load for stiffness(ELS) and adapting this to the initial global stiffness matrix which has already been calculated and saved in initial analysis and finally calculating the correction displacements for the nonlinear analysis, The key characteristics of the proposed algorithm is that it calculates the inverse matrix of the global stiffness matrix only once irresponsive of the number of load steps. The efficiency of the proposed algorithm depends on the ratio of the active Dofs - the Dofs which are directly connected to the members of which the element stiffness are changed - to the total Dofs, and based on this ratio by using the proposed algorithm as a complementary method to the existing algorithm the efficiency of the nonlinear analysis can be improved dramatically.

A QUASI-NEWTON METHOD USING DIRECTIONAL DERIVATIVES FOR NONLINEAR EQUATIONS

  • Kim, Sun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.491-502
    • /
    • 1994
  • Many problems arising in science and engineering require the numerical solution of a system of n nonlinear equations in n unknowns: (1) given F : $R^{n}$ $\rightarrow$ $R^{n}$ , find $x_{*}$ $\epsilon$ $R^{n}$ / such that F($x_{*}$) = 0. Nonlinear problems are generally solved by iteration. Davidson [3] and Broyden [1] introduced the methods which had led to a large amount of research and a class of algorithm. This work has been called by the quasi-Newton methods, secant updates, or modification methods. Newton's method is the classical method for the problem (1) and quasi-Newton methods have been proposed to circumvent computational disadvantages of Newton's method.(omitted)

  • PDF

A Planar Curve Intersection Algorithm : The Mix-and-Match of Curve Characterization, Subdivision , Approximation, Implicitization, and Newton iteration (평면 곡선의 교점 계산에 있어 곡선 특성화, 분할, 근사, 음함수화 및 뉴턴 방법을 이용한 Mix-and-Mntch알고리즘)

  • 김덕수;이순웅;유중형;조영송
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.183-191
    • /
    • 1998
  • There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.

  • PDF

Analyses of Non-linear Behavior of Axisymmetric Structure by Finite Element Method (유한요소법을 이용한 축대칭 구조물의 비선형 거동해석)

  • 구영덕;민경탁
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 1997
  • A finite element method is programmed to analyse the nonlinear behavior of axisymmetric structures. The lst order Mindlin shell theory which takes into account the transversal shear deformation is used to formulate a conical two node element with six degrees of freedom. To evade the shear locking phenomenon which arises in Mindlin type element when the effect of shear deformation tends to zero, the reduced integration of one point Gauss Quadrature at the center of element is employed. This method is the Updated Lagrangian formulation which refers the variables to the state of the most recent iteration. The solution is searched by Newton-Raphson iteration method. The tangent matrix of this method is obtained by a finite difference method by perturbating the degrees of freedom with small values. For the moment this program is limited to the analyses of non-linear elastic problems. For structures which could have elastic stability problem, the calculation is controled by displacement.

  • PDF

ON POSITIVE DEFINITE SOLUTIONS OF A CLASS OF NONLINEAR MATRIX EQUATION

  • Fang, Liang;Liu, San-Yang;Yin, Xiao-Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.431-448
    • /
    • 2018
  • This paper is concerned with the positive definite solutions of the nonlinear matrix equation $X-A^*{\bar{X}}^{-1}A=Q$, where A, Q are given complex matrices with Q positive definite. We show that such a matrix equation always has a unique positive definite solution and if A is nonsingular, it also has a unique negative definite solution. Moreover, based on Sherman-Morrison-Woodbury formula, we derive elegant relationships between solutions of $X-A^*{\bar{X}}^{-1}A=I$ and the well-studied standard nonlinear matrix equation $Y+B^*Y^{-1}B=Q$, where B, Q are uniquely determined by A. Then several effective numerical algorithms for the unique positive definite solution of $X-A^*{\bar{X}}^{-1}A=Q$ with linear or quadratic convergence rate such as inverse-free fixed-point iteration, structure-preserving doubling algorithm, Newton algorithm are proposed. Numerical examples are presented to illustrate the effectiveness of all the theoretical results and the behavior of the considered algorithms.