1 |
M. Berzig, X. Duan, and B. Samet, Positive definite solution of the matrix equation via Bhaskar-Lakshmikantham fixed point theorem, Math. Sci. (Springer) 6 (2012), 55-62.
|
2 |
J. H. Bevis, F. J. Hall, and R. E. Hartwig, Consimilarity and the matrix equation , in Current trends in matrix theory (Auburn, Ala., 1986), 51-64, North-Holland, New York.
|
3 |
J. H. Bevis, F. J. Hall, and R. E. Hartwig, The matrix equation and its special cases, SIAM J. Matrix Anal. Appl. 9 (1988), no. 3, 348-359.
DOI
|
4 |
R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
|
5 |
M. T. Chu, On the first degree Fejer-Riesz factorization and its applications to , Linear Algebra Appl. 489 (2016), 123-143.
DOI
|
6 |
XP.-F. Duan, A.-P. Liao, and B. Tang, On the nonlinear matrix equation , Linear Algebra Appl. 429 (2008), no. 1, 110-121.
DOI
|
7 |
X.-F. Duan, Q.-W.Wang, and C.-M. Li, Positive definite solution of a class of nonlinear matrix equation, Linear Multilinear Algebra 62 (2014), no. 6, 839-852.
DOI
|
8 |
J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and suffcient conditions for the existence of a positive definite solution of the matrix equation , Linear Algebra Appl. 186 (1993), 255-275.
DOI
|
9 |
A. Ferrante and B. C. Levy, Hermitian solutions of the equation , Linear Algebra Appl. 247 (1996), 359-373.
DOI
|
10 |
C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999), no. 228, 1589-1603.
DOI
|
11 |
V. I. Hasanov, Positive definite solutions of the matrix equations , Linear Algebra Appl. 404 (2005), 166-182.
DOI
|
12 |
N. Huang and C.-F. Ma, Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation, Comput. Math. Appl. 69 (2015), no. 6, 494-502.
DOI
|
13 |
I. G. Ivanov, V. I. Hasanov, and F. Uhlig, Improved methods and starting values to solve the matrix equations iteratively, Math. Comp. 74 (2005), no. 249, 263-278.
DOI
|
14 |
T. Jiang, X. Cheng, and L. Chen, An algebraic relation between consimilarity and similarity of complex matrices and its applications, J. Phys. A 39 (2006), no. 29, 9215-9222.
DOI
|
15 |
T. Jiang and M. Wei, On solutions of the matrix equations X - AXB = C and , Linear Algebra Appl. 367 (2003), 225-233.
DOI
|
16 |
J. Li and Y. Zhang, Perturbation analysis of the matrix equation , Linear Algebra Appl. 431 (2009), no. 9, 1489-1501.
DOI
|
17 |
B. Meini, Effcient computation of the extreme solutions of , Math. Comp. 71 (2002), no. 239, 1189-1204.
DOI
|
18 |
Z.-Y. Li, B. Zhou, and J. Lam, Towards positive definite solutions of a class of nonlinear matrix equations, Appl. Math. Comput. 237 (2014), 546-559.
|
19 |
W.-W. Lin and S.-F. Xu, Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl. 28 (2006), no. 1, 26-39.
DOI
|
20 |
X.-G. Liu and H. Gao, On the positive definite solutions of the matrix equations , Linear Algebra Appl. 368 (2003), 83-97.
DOI
|
21 |
Z. Peng, S. M. El-Sayed, and X. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation , J. Comput. Appl. Math. 200 (2007), no. 2, 520-527.
DOI
|
22 |
A. C. M. Ran and M. C. B. Reurings, On the nonlinear matrix equation X+AF(X)A = Q : solutions and perturbation theory, Linear Algebra Appl. 346 (2002), 15-26.
DOI
|
23 |
S. Vaezzadeh, S. M. Vaezpour, and R. Saadati, On nonlinear matrix equations, Appl. Math. Lett. 26 (2013), no. 9, 919-923.
DOI
|
24 |
Y. Yao and X.-X. Guo, Numerical methods to solve the complex symmetric stabilizing solution of the complex matrix equation , J. Math. Study 48 (2015), no. 1, 53-65.
DOI
|
25 |
X.-X. Yin, S.-Y. Liu, and L. Fang, Solutions and perturbation estimates for the matrix equation , Linear Algebra Appl. 431 (2009), no. 9, 1409-1421.
DOI
|
26 |
B. Zhou, G.-B. Cai, and J. Lam, Positive definite solutions of the nonlinear matrix equation , Appl. Math. Comput. 219 (2013), no. 14, 7377-7391.
DOI
|
27 |
J. Yong and X. Y. Zhou, Stochastic Controls, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
|
28 |
L. Zhang, An improved inversion-free method for solving the matrix equation , J. Comput. Appl. Math. 253 (2013), 200-203.
DOI
|