Comm. Korean Math. Soc. 9 (1994), No. 2, pp. 491-502

A QUASI-NEWTON METHOD USING DIRECTIONAL
DERIVATIVES FOR NONLINEAR EQUATIONS

SUNYOUNG KIM

1. Introduction

Many problems arising in science and engineering require the numer-
ical solution of a system of n nonlinear equations in n unknowns:

(1) given F : R" — R", find z, € R" such that F(z,) =0.

Nonlinear problems are generally solved by iteration. Davidson [3] and
Broyden [1] introduced the methods which had led to a large amount of
research and a class of algorithm. This work has been called by the quasi-
Newton methods, secant updates, or modification methods. Newton’s
method is the classical method for the problem (1) and quasi-Newton
methods have been proposed to circumvent computational disadvantages
of Newton’s method.

A number of methods have been developed from Newton’s method.
The advantages of Newton’s method are: the existence of a domain of
attraction for a root insures stability for the iteration and its quadratic
convergence to a root. On the other hand, in many problems, it requires
a very good initial approximation to z, in order to converge. Though its
convergence rate is quadratic, it is not globally convergent. The more
important disadvantage is that it requires the computation of the Jaco-
bian matrix at every iteration, which involves n? function evaluations.
This 1s very expensive operation for most functions. If the Jacobian is
not analytically available, then approximating the Jacobian by a less
expensive method is a very important issue.

Quasi-Newton methods use the concept of Newton’s method but ap-
proximate the Jacobian matrix. Many of the successful quasi-Newton
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methods use updates which satisfy a linear constraint. The basic idea is
to approximate the Jacobian matrix by a matrix Byy; satisfying,

(2) Y = Bk+1(-73k+1 - ~"3k)a

where yx = F(zy41)— F(zk). Equation (2) is called as the quasi-Newton
equation and the methods that satisfy (2) are quasi-Newton methods.
Of all the quasi-Newton methods that have been introduced, Broyden’s
method has been known as the most successful. It is very efficient for
problems of small to medium size, since it does not require the eval-
uation of the Jacobian and has a relatively fast, q-superlinear rate of
convergence ([4], [5]). However, it does not enjoy the self-correctiveness
of Newton’s method [5] and fails to converge much more often. Its con-
vergence is unstable when the equations are highly nonlinear or sparse.

In this paper, we propose a method to improve the weakness of Broy-
den’s method by considering two matrices for the update for the Jacobian
and solving them together using generalized inverse.

Broyden’s method will be briefly derived, in the next section. The mo-
tivation, derivation, algorithm, and convergence rate of the new method
will be discussed in section 3. Numerical experiment will be followed.

We use R"™ to denote n-dimensional real Euclidean space with the
inner product, (z,y) = 2Ty, || - || stands for either l; vector norm ||z}l =
(z,x)%, or for any matrix norm which is consistent with the l; vector
norm in the sense that ||Az| < ||Alll|z|| for ¢ € R and any matrix,
A of order n. In particular, the I; norm and the Frobenius norm are
consistent with the [, vector norm, and the Frobenius norm is computed
by

4|13 = tr(447),

the weighted Frobenius norm is

14l = |AMAT].

2. Broyden’s method

Assume that F' : R™ — R" is continuously differentiable in an open
convex set D and for given z in D and s # 0, the vector T = z + s
belongs to D.
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For given € > 0, there is a § > 0 such that
|F(z) - F(@) - F'(@)e - 3)| < o - 3]
if | — z|| < 6, since F' is continuous at T. Hence,
(3) F(z) =~ F(z) + F'(T)(z — 7).

If B denotes an approximation to F'(Z), and let s =7 —z and y =

F(7) — F(z), then, (3) becomes
(4) y = Bs.

Now, suppose that we had an approximation B to F'(z). Broyden rea-
soned that there really is no justification for having B differ from B on
the orthogonal complement of s. This can be expressed as the require-
ment

(5) Bz = Bz if (z,s) =0.
Clearly (4) and (5) uniquely determine B from B and in fact [7],

(6) B-pi WZB)T

STS

From (6), Broyden’s method can be used in an iterative method as fol-
lows.

Algorithm 2.1

Given F': R® — R",zy € R", By € R™*".
Do for k =0,1,...:
Solve Bysy = —F(zy) for sg,
Tgy1 = Tk + Sk,
Y& := F(zk41) — F(ax),

(yx — Brsk)st

Biyi = Bi + T
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It is known that Broyden’s method has g-superlinear convergence rate
and can compete with other algorithms when the Jacobian is difficult to
evaluate. In Broyden’s method, B; depends on each B; with j < k and
thus it may retain information which is irrelevant or even harmful; it is
not self-correcting.

To improve the disadvantages of Broyden’s method that we have dis-
cussed, we mainly investigate the variational problem:

(7) min{||J = Bl|p.» : J € R™*", Bs = y},

where J is the Jacobian matrix and B is an approximation to J and
the norm is the weighted Frobenius norm with any weighting matrix M.
This problem comes from the derivation of minimum change updates to
the matrix [6], B, of approximate Jacobian matrices in quasi-Newton
methods for solving nonlinear systems of equations. The problem, (7) is
related to the bound deterioration Theorem [7] given as follows.

THEOREM 2.1. Let D C R"™ be an open convex set containing z,,
with  # z,. Let f : R® — R", J(z) € Lip4(D), B € R**", B defined
by (6) for either the Frobenius or l, matrix norms,

®) 1B~ 1@ < 1B - I(@)] + |7 - .

Furthermore, if z, € D and J(z) obeys the weaker Lipschitz condition
1) = J(@a)ll < 7lle = 2.ll, for all z € D,

then,

©  1IB=J@)ll <[IB - J(=z.)l + %(IIT — 2ulz + o — z.]l2)-

Proof. [7].

If we get a tighter bound for || B — J|| by (7), a faster convergence rate
is obtained. In the next section, we propose a new quasi-Newton update
and compare it with Broyden’s update.
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3. Proposed Method: An Update Using Directional Deriva-
tives

There have been many methods for approximating the Jacobian ma-
trix. A method using the directional derivatives is presented in order
to handle problem (7), viz., approximate the Jacobian matrix more ac-
curately. The directional derivatives in the steepest descent direction
are utilized in the quasi-Newton equation when approximating the Ja-
cobian since the steepest descent direction, by definition, is most rapidly
decreasing direction.

If the analytical Jacobian is not available or expensive to compute,
then initial Jacobians are evaluated numerically by forward difference.
We will need the following lemma and the definition of the forward dif-
ference scheme given as follows.

LEMMA 3.1. Let F : R® — R™ be continuously differentiable in the
open convex set D C R™ z € D, and let J be Lipschitz continuous at
z in the neighborhood D, using a vector norm and the induced matrix
operator norm and the constant . Then, for any ¢ +p € D,

|F(z + p) — F(z) — J(2)pll < 2||pl-
For any u, v € D,

o =]l + Ju—c]

(10) [|[F(z +p)— F(z) - J(z)(v —u)[| < v 5

[fo = .

Proof. [5].

DEFINITION 3.1. The element of an approximate Jacobian, b;;, using
the forward difference scheme is defined as

bii = fi(z + he;j) — fi(z)
1] h )

where e; denotes the jth unit vector. The approximation to j-th column

of J(z) is defined by

_ F(m+hej)—F(:c).

B ; A
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Consider the steepest descent direction, ds, defined as,
ds = ~BTF(z),

where F € R"™. Since F(z) decreases most rapidly from z in the direction
of the steepest-descent direction, when approximating F'(7), a Jacobian
approximation at 7, the directional derivative, F(T)'ds is considered and
7 is moved in the direction of ds.

We derive the method using directional derivatives as follows:
Let

ds = —BTF ().
If directional derivatives are used in approximating the Jacobian,
F(T + hds) — F(T) det
7 = w.

We now use w as an approximation of Bds. Therefore, the new AB,
the update to the current Jacobian approximation B, can be obtained.
From the quasi-Newton equation,

Bds = (B + AB)ds
= Bds + ABds.

(11) F'(Z)ds ~

Using (11),
ABds = w — Bds = u.

We propose a method which combines the above update and Broy-
den’s update. Hence, we have two updates, two systems of equations to
solve,

ABds = u
ABs = —F(%T).
Let F denote F(z). Solving the above systems of equations for AB
yields a rank-2 update. We note that (s, ds), (F,u) € R"*2. The update
is:
AB(s,ds) =(F,u),
AB =(F,u)(s,ds)*

(12) _ 1

" sTsdsTs — (sT's)2

+ [sTsF + sTsu]dsT,

[dsTsF — sTsu]sT
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o= [ (2] ()

(12) is used in iterations as follows:
Algorithm 3.2

where

Given F: R® — R",zo € R", By € R™*"
Do fork =0,1,...:
Solve Bgsr = —F(zy) for s

Tk+1 = Tk + Sk

yk = F(zky1) — F(z)

ds := —BTF(z})

. F(wk+1 + hOdS) — F(wk+1)
w = h

u:=w — Bds

1
sTsdsTs — (sTs)?

Biy1 := B + [dsTst.H - sTsu]sT

+ [Frg15Ts + usTs]dsT

The above algorithm shows better performance than Broyden’s
method in numerical tests and we would like to show its convergent
property theoretically.

Convergence Properties
The following theorem deals with the convergence rate of the above
algorithm.

THEOREM 3.1. Let D C R™ be an open convex set containing z,T,
with = # z.. Let F : R® — R", J(z) € Lip4(D),B € R"*", B defined
by (12). If z, € D and J(z) obeys the weaker Lipschitz condition, then
for either the Frobenius or ly matrix norms,

(13)  [[B—J(z)l < |B - J(z.)ll + %(llf— 2|12 + ||dsll2),
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where p = —3— ) = sTsdsTds, and py = (sTds)?.
(1—%)5

Proof. The update is

AB = (f,u)(s,ds)*

T
Let (s,ds)™ = (ZT> .

Then,
1
”aT” = (1 P_L)% ma
- B2

1 1

”bT“ = 1 .
RESETR

Let J. = J(z4). Subtracting J, from both sides of B = B 4+ AB,

B-J,=B—J,+(F,u) (‘;;)
=B — J. + (y — Bs)aT + (w — Bds)bT
=B — J. + (Jus — Bs)aT + (y — J,8)aT
+ (Juds — Bds)bT + (w — J,ds)bT
= (B - J)I — sa” — dsbT) + (y — Jys)aT + (w — J.ds)bT

[I — saT — dsbT) = (I—(s,ds) (Z;))

= [I - (s,ds)(s, ds)*].

Now,

Since
[T — (5, ds)(s, ds)* [T — (s, ds)(s,ds)*] = [T — (s, ds)(s,ds)*],
[T — (s,ds)(s,ds)*] is a projection and

(14) I = (s,ds)(s, ds)*]ll2 = 1.
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Using Lemma 2.1,

I(y = Jus)aT + (w — Jods)bT||
< |y = Jus)aT|| + [[(w — Juds)bT||

(15) < Z(lsllla™] + lidsl15”)
< Zu(llsllz + 1ds]l2)

B
= 7(||$ — z||2 + [|ds]|2).

In view of (14) and (15), we have (13).

It is proved in [2] that limk—c s = 0 and so is lim_, ds = 0, there-
fore, Theorem 3.1 shows that the update produces a deteriorating bound
for ||B — J.|| at each iteration which implies g-linear convergence rate.

According to Dennis and Moré ([4], [8]) to get a g-superlinear conver-
gence, we need only to prove that

5) i 1Bk = P onsn —an)ll _

0.
k—oo |ze+1 — k|

The next theorem deals with g-superlinear convergence rate of the
new method and uses the same assumption as the convergence theorem
for Broyden’s method.

THEOREM 3.2. If there exists positive constants €, § such that if ||zo —
z.|| < € and || Bo—Bx|| < 8, then the sequence z, generated by Algorithm
3.2 is well defined and converges g-superlinearly to ..

Proof. Let G = (s,ds) and E = B — J,. Then, direct computation
shows that

IEGG™ |7 = 2||El|F-

In view of

I = |EGGT|F + | E(I - GG,
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and Theorem 3.2,

|Betallr < NBR(I = GGH)|p + Lalllsll2 + llds]l2)
(17) < —I1Bllr ++3u(lsllz + lldsll2)
< Zillsllz + l1ds{l2)-

This implies (16).
The bound || Ej4;|| in Broyden’s method is

Y
(18) 1Be4alle < [1Exllr + 5 (lls]l2)-

From (17) and (18), the proposed method has a smaller bound for
|| Ex+1|| than that of Broyden’s since ||s|| and ||ds|| is negligible, which in-
dicates that the proposed method has faster or at least same convergence
rate as Broyden’s. In next section, we will present numerical evidence
showing efficiency of the proposed algorithm.

4. Numerical experiments and discussion

Numerical experiment with the proposed method and Broyden’s meth-
ods are encouraging. The problems for unconstrained minimization, i.e.,
solving (1), from Moré et al ([10], [11]) were used to compare the number
of iterations for each method using the same test functions and starting
values. The problems number in [10] are used for easy reference: 21 for
extended Resenbrock function, 22 for extended Powell’s singular func-
tion, 26 for trigonometric function, 27 for Brown’s almost linear function,
28 for discrete boundary value function, 29 for discrete integral equation
function, 30 for Broyden’s tridiagonal function, and 31 for Broyden’s
banded function. Broyden’s banded function has been modified as fol-
lows: the original constant coefficients 2, 5 and 1 are changed to three
parameters wl, w2 and w3, respectively. Varying the three parameters
provides the problem with progressively worse scaling.

Results of computational experiment are given in Table 1. We used
n = 40 and ftol = 1078, Initial Jacobians were evaluated numerically by
finite differences. Two initial Newton iterations were used. It is evident
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from Table 1 that the proposed method converges faster than Broyden’s
Method in the number of iterations and it is also tested that the per-
formance of the new method improves with increase in the size of the
problems. For the problems that converge within a few of iterations, it
takes the same number of iterations for the proposed method to con-
verge because as shown Theorem 3.5, the smaller bound for Ey in the
proposed method gives an advantage as the iteration proceeds.

Prob. Broyden’s Method New Method
21 11 8
22 18 18
26 17 12
27 5 5
28 2 2
29 3 3
30 6 6
31(6) 11 9
31(12) 13 9
31(25) 16 12
31(50) 23 14
31(100) Non Convergence 18
31(200) 60 22
31(400) Non Convergence 29

Table 1. Broyden & new methods in no. of iterations

In Table 1, notice that Broyden’s method failed for two problems while
the new method succeeded in getting a solution. This is an example
where Broyden’s method lacks stability. The tests indicate that the new
update shows less divergence.

The overhead of the new method is that it requires the calculation
of the steepest descent direction and w at each iteration, this entails,
respectively, additional O(n?) and n function evaluations. However, as
indicated numerically and theoretically in the last section, the new up-
date behaves much better for the problems which take many iterations
to converge to a root and the impact of additional computation can be
ignored because the new method takes fewer iterations to converge.

Concluding Remarks

We have presented a quasi-Newton type method employing directional
derivatives for solving nonlinear equations and shown that the proposed
method is locally and q-superlinearly convergent. It is also proved that
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the Jacobian approximation of the proposed method is better than that
of Broyden’s. Computational results show significant efficiency of the
method.
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