DOI QR코드

DOI QR Code

ON POSITIVE DEFINITE SOLUTIONS OF A CLASS OF NONLINEAR MATRIX EQUATION

  • Fang, Liang (School of Mathematics and Statistics Xidian University) ;
  • Liu, San-Yang (School of Mathematics and Statistics Xidian University) ;
  • Yin, Xiao-Yan (School of Mathematics and Statistics Xidian University)
  • Received : 2017.01.19
  • Accepted : 2017.10.17
  • Published : 2018.03.31

Abstract

This paper is concerned with the positive definite solutions of the nonlinear matrix equation $X-A^*{\bar{X}}^{-1}A=Q$, where A, Q are given complex matrices with Q positive definite. We show that such a matrix equation always has a unique positive definite solution and if A is nonsingular, it also has a unique negative definite solution. Moreover, based on Sherman-Morrison-Woodbury formula, we derive elegant relationships between solutions of $X-A^*{\bar{X}}^{-1}A=I$ and the well-studied standard nonlinear matrix equation $Y+B^*Y^{-1}B=Q$, where B, Q are uniquely determined by A. Then several effective numerical algorithms for the unique positive definite solution of $X-A^*{\bar{X}}^{-1}A=Q$ with linear or quadratic convergence rate such as inverse-free fixed-point iteration, structure-preserving doubling algorithm, Newton algorithm are proposed. Numerical examples are presented to illustrate the effectiveness of all the theoretical results and the behavior of the considered algorithms.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. M. Berzig, X. Duan, and B. Samet, Positive definite solution of the matrix equation $X\;=\;Q\;-\;A*X^{-1}\;A+B*X^{-1}\;B$ via Bhaskar-Lakshmikantham fixed point theorem, Math. Sci. (Springer) 6 (2012), 55-62.
  2. J. H. Bevis, F. J. Hall, and R. E. Hartwig, Consimilarity and the matrix equation $A{\overline{X}}\;-\;XB\;=\;C$, in Current trends in matrix theory (Auburn, Ala., 1986), 51-64, North-Holland, New York.
  3. J. H. Bevis, F. J. Hall, and R. E. Hartwig, The matrix equation $A{\overline{X}}\;-\;XB\;=\;C$ and its special cases, SIAM J. Matrix Anal. Appl. 9 (1988), no. 3, 348-359. https://doi.org/10.1137/0609029
  4. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
  5. M. T. Chu, On the first degree Fejer-Riesz factorization and its applications to $X\;+\;A*X^{-1}\;A\;=\;Q$, Linear Algebra Appl. 489 (2016), 123-143. https://doi.org/10.1016/j.laa.2015.09.051
  6. XP.-F. Duan, A.-P. Liao, and B. Tang, On the nonlinear matrix equation $X\;-\;{{\sum}_{i=1}^{m}}A_{i}^{*}X^{{\delta}_{i}}A_{i}\;=\;Q$, Linear Algebra Appl. 429 (2008), no. 1, 110-121. https://doi.org/10.1016/j.laa.2008.02.014
  7. X.-F. Duan, Q.-W.Wang, and C.-M. Li, Positive definite solution of a class of nonlinear matrix equation, Linear Multilinear Algebra 62 (2014), no. 6, 839-852. https://doi.org/10.1080/03081087.2013.794230
  8. J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and suffcient conditions for the existence of a positive definite solution of the matrix equation $X\;+\;A*X^{-1}\;A\;=\;Q$, Linear Algebra Appl. 186 (1993), 255-275. https://doi.org/10.1016/0024-3795(93)90295-Y
  9. A. Ferrante and B. C. Levy, Hermitian solutions of the equation $X\;=\;Q\;+\;NX^{-1}\;N*$, Linear Algebra Appl. 247 (1996), 359-373. https://doi.org/10.1016/0024-3795(95)00121-2
  10. C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999), no. 228, 1589-1603. https://doi.org/10.1090/S0025-5718-99-01122-9
  11. V. I. Hasanov, Positive definite solutions of the matrix equations $X\;{\pm}\;A*X^{-q}A\;=\;Q$, Linear Algebra Appl. 404 (2005), 166-182. https://doi.org/10.1016/j.laa.2005.02.024
  12. N. Huang and C.-F. Ma, Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation, Comput. Math. Appl. 69 (2015), no. 6, 494-502. https://doi.org/10.1016/j.camwa.2015.01.008
  13. I. G. Ivanov, V. I. Hasanov, and F. Uhlig, Improved methods and starting values to solve the matrix equations $X\;{\pm}\;A*X^{-1}\;A\;=\;I$ iteratively, Math. Comp. 74 (2005), no. 249, 263-278. https://doi.org/10.1090/S0025-5718-04-01636-9
  14. T. Jiang, X. Cheng, and L. Chen, An algebraic relation between consimilarity and similarity of complex matrices and its applications, J. Phys. A 39 (2006), no. 29, 9215-9222. https://doi.org/10.1088/0305-4470/39/29/014
  15. T. Jiang and M. Wei, On solutions of the matrix equations X - AXB = C and $X\;-\;A{\overline{X}}B\;=\;C$, Linear Algebra Appl. 367 (2003), 225-233. https://doi.org/10.1016/S0024-3795(02)00633-X
  16. J. Li and Y. Zhang, Perturbation analysis of the matrix equation $X\;{\pm}\;A*X^{-p}A\;=\;Q$, Linear Algebra Appl. 431 (2009), no. 9, 1489-1501. https://doi.org/10.1016/j.laa.2009.05.013
  17. Z.-Y. Li, B. Zhou, and J. Lam, Towards positive definite solutions of a class of nonlinear matrix equations, Appl. Math. Comput. 237 (2014), 546-559.
  18. W.-W. Lin and S.-F. Xu, Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl. 28 (2006), no. 1, 26-39. https://doi.org/10.1137/040617650
  19. X.-G. Liu and H. Gao, On the positive definite solutions of the matrix equations $X^{s}\;{\pm}\;A*X^{-t}A\;=\;I_{n}$, Linear Algebra Appl. 368 (2003), 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4
  20. B. Meini, Effcient computation of the extreme solutions of $X\;+\;A*X^{-1}A\;=\;Q\;and\;X\;-\;A*X^{-1}A\;=\;Q$, Math. Comp. 71 (2002), no. 239, 1189-1204. https://doi.org/10.1090/S0025-5718-01-01368-0
  21. Z. Peng, S. M. El-Sayed, and X. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation $X\;+\;A*X^{-{\alpha}}A\;=\;Q$, J. Comput. Appl. Math. 200 (2007), no. 2, 520-527. https://doi.org/10.1016/j.cam.2006.01.033
  22. A. C. M. Ran and M. C. B. Reurings, On the nonlinear matrix equation X+AF(X)A = Q : solutions and perturbation theory, Linear Algebra Appl. 346 (2002), 15-26. https://doi.org/10.1016/S0024-3795(01)00508-0
  23. S. Vaezzadeh, S. M. Vaezpour, and R. Saadati, On nonlinear matrix equations, Appl. Math. Lett. 26 (2013), no. 9, 919-923. https://doi.org/10.1016/j.aml.2013.03.017
  24. Y. Yao and X.-X. Guo, Numerical methods to solve the complex symmetric stabilizing solution of the complex matrix equation $X\;+\;A^{T}X^{-1}A\;=\;Q$, J. Math. Study 48 (2015), no. 1, 53-65. https://doi.org/10.4208/jms.v48n1.15.04
  25. X.-X. Yin, S.-Y. Liu, and L. Fang, Solutions and perturbation estimates for the matrix equation $X^{S}\;+\;A*X^{-t}A\;=\;Q$, Linear Algebra Appl. 431 (2009), no. 9, 1409-1421. https://doi.org/10.1016/j.laa.2009.05.010
  26. J. Yong and X. Y. Zhou, Stochastic Controls, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
  27. L. Zhang, An improved inversion-free method for solving the matrix equation $X\;+\;A*X^{-{\alpha}}A\;=\;Q$, J. Comput. Appl. Math. 253 (2013), 200-203. https://doi.org/10.1016/j.cam.2013.04.007
  28. B. Zhou, G.-B. Cai, and J. Lam, Positive definite solutions of the nonlinear matrix equation $X\;+\;A^{H}\overline{X}^{-1}\;A\;=\;I$, Appl. Math. Comput. 219 (2013), no. 14, 7377-7391. https://doi.org/10.1016/j.amc.2013.01.021