Acknowledgement
Supported by : Central Universities
References
-
M. Berzig, X. Duan, and B. Samet, Positive definite solution of the matrix equation
$X\;=\;Q\;-\;A*X^{-1}\;A+B*X^{-1}\;B$ via Bhaskar-Lakshmikantham fixed point theorem, Math. Sci. (Springer) 6 (2012), 55-62. -
J. H. Bevis, F. J. Hall, and R. E. Hartwig, Consimilarity and the matrix equation
$A{\overline{X}}\;-\;XB\;=\;C$ , in Current trends in matrix theory (Auburn, Ala., 1986), 51-64, North-Holland, New York. -
J. H. Bevis, F. J. Hall, and R. E. Hartwig, The matrix equation
$A{\overline{X}}\;-\;XB\;=\;C$ and its special cases, SIAM J. Matrix Anal. Appl. 9 (1988), no. 3, 348-359. https://doi.org/10.1137/0609029 - R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
-
M. T. Chu, On the first degree Fejer-Riesz factorization and its applications to
$X\;+\;A*X^{-1}\;A\;=\;Q$ , Linear Algebra Appl. 489 (2016), 123-143. https://doi.org/10.1016/j.laa.2015.09.051 -
XP.-F. Duan, A.-P. Liao, and B. Tang, On the nonlinear matrix equation
$X\;-\;{{\sum}_{i=1}^{m}}A_{i}^{*}X^{{\delta}_{i}}A_{i}\;=\;Q$ , Linear Algebra Appl. 429 (2008), no. 1, 110-121. https://doi.org/10.1016/j.laa.2008.02.014 - X.-F. Duan, Q.-W.Wang, and C.-M. Li, Positive definite solution of a class of nonlinear matrix equation, Linear Multilinear Algebra 62 (2014), no. 6, 839-852. https://doi.org/10.1080/03081087.2013.794230
-
J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer, Necessary and suffcient conditions for the existence of a positive definite solution of the matrix equation
$X\;+\;A*X^{-1}\;A\;=\;Q$ , Linear Algebra Appl. 186 (1993), 255-275. https://doi.org/10.1016/0024-3795(93)90295-Y -
A. Ferrante and B. C. Levy, Hermitian solutions of the equation
$X\;=\;Q\;+\;NX^{-1}\;N*$ , Linear Algebra Appl. 247 (1996), 359-373. https://doi.org/10.1016/0024-3795(95)00121-2 - C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, Math. Comp. 68 (1999), no. 228, 1589-1603. https://doi.org/10.1090/S0025-5718-99-01122-9
-
V. I. Hasanov, Positive definite solutions of the matrix equations
$X\;{\pm}\;A*X^{-q}A\;=\;Q$ , Linear Algebra Appl. 404 (2005), 166-182. https://doi.org/10.1016/j.laa.2005.02.024 - N. Huang and C.-F. Ma, Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation, Comput. Math. Appl. 69 (2015), no. 6, 494-502. https://doi.org/10.1016/j.camwa.2015.01.008
-
I. G. Ivanov, V. I. Hasanov, and F. Uhlig, Improved methods and starting values to solve the matrix equations
$X\;{\pm}\;A*X^{-1}\;A\;=\;I$ iteratively, Math. Comp. 74 (2005), no. 249, 263-278. https://doi.org/10.1090/S0025-5718-04-01636-9 - T. Jiang, X. Cheng, and L. Chen, An algebraic relation between consimilarity and similarity of complex matrices and its applications, J. Phys. A 39 (2006), no. 29, 9215-9222. https://doi.org/10.1088/0305-4470/39/29/014
-
T. Jiang and M. Wei, On solutions of the matrix equations X - AXB = C and
$X\;-\;A{\overline{X}}B\;=\;C$ , Linear Algebra Appl. 367 (2003), 225-233. https://doi.org/10.1016/S0024-3795(02)00633-X -
J. Li and Y. Zhang, Perturbation analysis of the matrix equation
$X\;{\pm}\;A*X^{-p}A\;=\;Q$ , Linear Algebra Appl. 431 (2009), no. 9, 1489-1501. https://doi.org/10.1016/j.laa.2009.05.013 - Z.-Y. Li, B. Zhou, and J. Lam, Towards positive definite solutions of a class of nonlinear matrix equations, Appl. Math. Comput. 237 (2014), 546-559.
- W.-W. Lin and S.-F. Xu, Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl. 28 (2006), no. 1, 26-39. https://doi.org/10.1137/040617650
-
X.-G. Liu and H. Gao, On the positive definite solutions of the matrix equations
$X^{s}\;{\pm}\;A*X^{-t}A\;=\;I_{n}$ , Linear Algebra Appl. 368 (2003), 83-97. https://doi.org/10.1016/S0024-3795(02)00661-4 -
B. Meini, Effcient computation of the extreme solutions of
$X\;+\;A*X^{-1}A\;=\;Q\;and\;X\;-\;A*X^{-1}A\;=\;Q$ , Math. Comp. 71 (2002), no. 239, 1189-1204. https://doi.org/10.1090/S0025-5718-01-01368-0 -
Z. Peng, S. M. El-Sayed, and X. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation
$X\;+\;A*X^{-{\alpha}}A\;=\;Q$ , J. Comput. Appl. Math. 200 (2007), no. 2, 520-527. https://doi.org/10.1016/j.cam.2006.01.033 - A. C. M. Ran and M. C. B. Reurings, On the nonlinear matrix equation X+AF(X)A = Q : solutions and perturbation theory, Linear Algebra Appl. 346 (2002), 15-26. https://doi.org/10.1016/S0024-3795(01)00508-0
- S. Vaezzadeh, S. M. Vaezpour, and R. Saadati, On nonlinear matrix equations, Appl. Math. Lett. 26 (2013), no. 9, 919-923. https://doi.org/10.1016/j.aml.2013.03.017
-
Y. Yao and X.-X. Guo, Numerical methods to solve the complex symmetric stabilizing solution of the complex matrix equation
$X\;+\;A^{T}X^{-1}A\;=\;Q$ , J. Math. Study 48 (2015), no. 1, 53-65. https://doi.org/10.4208/jms.v48n1.15.04 -
X.-X. Yin, S.-Y. Liu, and L. Fang, Solutions and perturbation estimates for the matrix equation
$X^{S}\;+\;A*X^{-t}A\;=\;Q$ , Linear Algebra Appl. 431 (2009), no. 9, 1409-1421. https://doi.org/10.1016/j.laa.2009.05.010 - J. Yong and X. Y. Zhou, Stochastic Controls, Applications of Mathematics (New York), 43, Springer-Verlag, New York, 1999.
-
L. Zhang, An improved inversion-free method for solving the matrix equation
$X\;+\;A*X^{-{\alpha}}A\;=\;Q$ , J. Comput. Appl. Math. 253 (2013), 200-203. https://doi.org/10.1016/j.cam.2013.04.007 -
B. Zhou, G.-B. Cai, and J. Lam, Positive definite solutions of the nonlinear matrix equation
$X\;+\;A^{H}\overline{X}^{-1}\;A\;=\;I$ , Appl. Math. Comput. 219 (2013), no. 14, 7377-7391. https://doi.org/10.1016/j.amc.2013.01.021