
Bull. Korean Math. Soc. 55 (2018), No. 2, pp. 431–448

https://doi.org/10.4134/BKMS.b170054

pISSN: 1015-8634 / eISSN: 2234-3016

ON POSITIVE DEFINITE SOLUTIONS OF A CLASS OF

NONLINEAR MATRIX EQUATION
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Abstract. This paper is concerned with the positive definite solutions

of the nonlinear matrix equation X − A∗X̄−1A = Q, where A,Q are
given complex matrices with Q positive definite. We show that such a

matrix equation always has a unique positive definite solution and if A

is nonsingular, it also has a unique negative definite solution. Moreover,
based on Sherman-Morrison-Woodbury formula, we derive elegant rela-

tionships between solutions of X − A∗X̄−1A = I and the well-studied
standard nonlinear matrix equation Y + B∗Y −1B = Q, where B,Q are

uniquely determined by A. Then several effective numerical algorithms

for the unique positive definite solution of X −A∗X̄−1A = Q with linear
or quadratic convergence rate such as inverse-free fixed-point iteration,

structure-preserving doubling algorithm, Newton algorithm are proposed.

Numerical examples are presented to illustrate the effectiveness of all the
theoretical results and the behavior of the considered algorithms.

1. Introduction

In the past several decades, nonlinear matrix equations (NMEs)

(1.1) X +A∗X−1A = Q

and

(1.2) X −A∗X−1A = Q

have been extensively studied because of their wide applications in control the-
ory, dynamic programming, ladder networks, stochastic filtering and statistics
(see [8–10, 26]). Several necessary conditions and sufficient conditions on the
existence of positive definite solutions of these two kinds of NMEs have been
derived and different iterative methods for computing the maximal positive defi-
nite solutions with linear and quadratic rate of convergence have been studied in
[5,10,13,18,20,22,24]. Moreover, several variations of these two equations such
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as X±A∗X−qA = Q with real number q > 0 [11,16,21,27], Xs±A∗X−tA = Q
with positive integers s, t [19, 25], X + M∗X−1M − N∗X−1N = I [1, 7] and
X −

∑m
i=1A

∗
iF (X)Ai = Q [6, 23] have been considered.

Two square complex matrices A and B are said to be con-similar if there
exists a nonsingular complex matrix P such that A = P−1BP̄ . Consimilarity of
complex matrices arises as a result of studying an antilinear operator referred
to different bases in complex vector spaces and it plays an important role
in modern quantum theory [14]. By using the theory of consimilarity, linear
matrix equations AX−XB = C and X−AXB = C which are generally derived
by the similarity of square matrices have been extended to AX− X̄B = C and
X−AX̄B = C [2,3,15], respectively. Similar to the linear case, the NME (1.1)
also has been generalized to

(1.3) X +A∗X̄−1A = Q

by means of cosimilarity [12, 17, 28]. In [28], Bin Zhou and his coauthors
established some sufficient conditions and necessary conditions for the exis-
tence of positive definite solutions of (1.3). Several iterative methods such as
basic fixed-point iterations, an inversion-free algorithm [17] and a structure-
preserving-doubling algorithm [12] for the maximal positive definite solution of
(1.3) are proposed.

For the NME (1.2), it is proved that there existed a unique positive definite
solution which coincided with the unique positive definite solution of a related
algebraic Riccati equation arising in Kalman filtering theory [9]. Unfortunately,
for all we know, very little research has been done on the solutions of the
variation

X −A∗X̄−1A = Q

of the NME (1.2), where X ∈ Cn×n is unknown, and A,Q ∈ Cn×n are given
complex matrices with Q Hermitian positive definite. Motivated by this fact
and the theory of consimilarity, we consider in this paper the solutions of X −
A∗X̄−1A = Q. Based on the importance of consimilarity in quantum theory
and nonlinear matrix equation (1.2) in control theory, Kalman filtering, it is
expected that the NME X − A∗X̄−1A = Q will find possible applications in
modern quantum theory.

Multiplying the NME X − A∗X̄−1A = Q on both the right and left sides
by Q−1/2, we obtain XQ − A∗QX̄

−1
Q AQ = I, where AQ = Q̄−1/2AQ−1/2 and

XQ = Q−1/2XQ−1/2. Therefore, we only need to consider

(1.4) X −A∗X̄−1A = I

without loss of generality.
The rest of this paper is organized as follows. Several preliminary results to

be used are given in Section 2. In Section 3, using real representation of a com-
plex matrix, we show that (1.4) always has a unique positive definite solution.
Based on the famous Sherman-Morrison-Woodbury formula, we transform (1.4)
into the extensively studied standard NME Y +B∗Y −1B = Q where B and Q
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are uniquely determined by A. Then several effective numerical algorithms for
obtaining the unique positive definite solution of (1.4) are proposed. Section 4
focus on the relationships between the positive definite solutions of the NMEs
(1.1) and (1.2) which have always been studied independently so far. Several
numerical examples are offered in Section 5 to illustrate the effectiveness of the
theoretical results.

2. Notations and preliminaries

Throughout this paper, X ≥ 0 (X > 0) means that X is Hermitian positive
semidefinite (positive definite). For n × n Hermitian matrices X,Y , we write
X ≥ Y (X > Y ) if X − Y ≥ 0 (> 0). Moreover, for a matrix A, we use AT ,
A∗, Ā, ‖A‖ and ρ(A) to denote the transpose, the conjugate transpose, the
conjugate, the spectral norm and the spectral radius of A, respectively. C is
the unit circle of the complex plane. Cn×n and Rn×n denote the set of n × n
complex matrices and real matrices, respectively.

We first introduce Sherman-Morrison-Woodbury formula and some existing
results regarding the positive definite solutions of the NMEs (1.1) and (1.2) in
this section.

Lemma 2.1 ([4] Sherman-Morrison-Woodbury formula). Let A,B,C and D
be some matrices of appropriate dimensions. Assume that A,C,A+BCD and
C−1 +DA−1B are all nonsingular. Then

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1.

Denote the rational matrix equation

ψ(λ) = λA+Q+ λ−1A∗

defined on the unit circle C of the complex plane, which is Hermitian for any
λ ∈ C. This function is said to be regular if there exists at least a λ ∈ C such
that detψ(λ) 6= 0.

Lemma 2.2 ([8]). Equation X+A∗X−1A = Q has a positive definite solution
X if and only if ψ(λ) is regular and ψ(λ) ≥ 0 for all λ ∈ C. Moreover, if
equation X + A∗X−1A = Q has a positive definite solution, then it has a
maximal solution XL and a minimal solution Xl such that 0 < Xl ≤ X ≤ XL

for any positive definite solution X. In addition, the maximal solution XL

satisfies ρ(X−1
L A) ≤ 1 and it can be found by the following basic fixed point

iteration: {
X0 = Q,
Xn+1 = Q−A∗X−1

n A, n = 0, 1, 2, . . . .

Lemma 2.3 ([20]). Suppose that A is nonsingular. Then X solves X +
A∗X−1A = Q if and only if Y = Q−X solves Y +AY −1A∗ = Q. In particu-
lar, if YL is the maximal positive definite solution of Y + AY −1A∗ = Q, then
Xl = Q− YL is the minimal positive definite solution of X +A∗X−1A = Q.
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Concerning equation X−A∗X−1A = Q, we have the following fundamental
result.

Lemma 2.4 ([9]). The set of solutions of X−A∗X−1A = Q is nonempty, and
admits a maximal element X+ and a minimal element X−, where X+ satisfies
ρ(X−1

+ A) < 1. Moreover, X+ is the unique positive definite solution and it can
be found by the following fixed point iteration{

X0 = Q,
Xn+1 = Q+A∗X−1

n A, n = 0, 1, 2, . . . .

In addition, if A is nonsingular, X− is the unique negative definite solution
and X− = Q− Y+, where Y+ is the maximal solution of the equation

Y −AY −1A∗ = Q.

3. Solutions of the NME X − A∗X̄−1A = I

For a complex matrix A = A1 + iA2 ∈ Cn×n where A1, A2 ∈ Rn×n, denote
AO and AH as

AO =

(
A1 −A2

A2 A1

)
, AH =

(
A2 A1

A1 −A2

)
.

Obviously, both AO and AH are real matrices and for A,B ∈ Cn×n

A = B ⇐⇒ AO = BO ⇐⇒ AH = BH.

Moreover, we define two unitary matrices E2n and P2n as follows.

E2n =

(
0 In
In 0

)
, P2n =

√
2

2

(
iIn In
In iIn

)
.

Now we present some properties of the operators (·)O and (·)H.

Lemma 3.1 ([28]). Let A ∈ Cn×n and B ∈ Cn×n be two given complex matri-
ces.

(i) The following equalities are true.

(AB)O = AOBO, (A−1)O = (AO)−1, (AT )O = E2n(AO)TE2n

(A∗)O = (AO)T , ĀO = E2nA
OE2n, AH = E2nA

O.

(ii) AO = P2n

(
A 0
0 Ā

)
P ∗2n.

(iii) A ≥ 0 (A > 0) if and only if AO ≥ 0 (AO > 0).
(iv) For any A ∈ Cn×n, there holds ‖AO‖ = ‖AH‖ = ‖A‖.
(v) For any A ∈ Cn×n, there hold ρ(AO) = ρ(A) and ρ(AH) = ρ1/2(AĀ).

Theorem 3.1. The NME in (1.4) always has a unique positive definite solution
X+ and the sequence {Xn} generated by

(3.2)

{
X0 = I,
Xn+1 = I +A∗X̄−1

n A, n = 1, 2, . . . ,
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converges to X+. Moreover, if A is nonsingular, (1.4) has a unique negative
definite solution X− and X− = I−Z+ where Z+ is the unique positive definite
solution of the NME Z −AZ̄−1A∗ = I.

Proof. Consider the nonlinear matrix equation in the following form

(3.3) W − (AH)TW−1AH = I2n.

Applying Lemma 2.4, (3.3) always has a unique positive definite solution, de-
noted by W+, and the sequence obtained by the following iteration{

W0 = I2n,
Wk+1 = I2n + (AH)TW−1

k AH, k = 1, 2, . . . ,

converges to W+.
In the following, for the sequences {Xk} in (3.2) and {Wk} in (3.3), we show

by induction that for any nonnegative integer k > 0, Wk = XO
k . Obviously,

W0 = XO
0 . Assume that Wk = XO

k . Then for k + 1,

Wk+1 = I2n + (AH)TW−1
k AH

= I2n + (AH)T (XO
k )−1AH

= I2n + (AO)TE2n(XO
k )−1E2nA

O

= I2n + (AO)T (E2nX
O
k E2n)−1AO

= I2n + (AO)T (X̄O
k )−1AO

= (In +A∗X̄−1
k A)O

= XO
k+1.

Hence, there exists a X+ > 0 such that

W+ = lim
k→∞

Wk = lim
k→∞

XO
k = XO

+.

Then XO
+ = I2n + (AH)T (XO

+)−1AH = (In + A∗X̄−1
+ A)O which implies that

X+ = In + A∗X̄−1
+ A, i.e., X+ is a positive definite solution of (1.4) and X+

can be obtained from iteration (3.2).
The uniqueness of X+ follows from the uniqueness of the positive definite

solution of (3.3). In fact, suppose that X (X 6= X+) is another positive definite
solution of X −A∗X̄−1A = I. Taking (·)O on both sides of X −A∗X̄−1A = I
and using Lemma 3.1 yields XO > 0 and

IOn = XO − (A∗X̄−1A)O

= XO − (A∗)O(X̄−1)OAO

= XO − (AO)T (X̄O)−1AO

= XO − (E2nA
H)T (X̄O)−1E2nA

H

= XO − (AH)TE2n(X̄O)−1E2nA
H

= XO − (AH)T (E2nX̄
OE2n)−1AH
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= XO − (AH)T (XO)−1AH.

Then XO (XO 6= XO
+) is also a positive definite solution of (3.3), which is a

contradiction with the fact that the NME in (3.3) has unique positive definite
solution.

Moreover, if A is nonsingular, then so is AH from Lemma 3.1. Applying
Lemma 2.4, we obtain that equation (3.3) has a unique negative definite solu-
tion W− and W− = I2n − Y+ where Y+ is the unique positive definite solution
of the equation Y − AHY −1(AH)T = I2n. By the discussions above, Y+ = ZO

+

where Z+ is the unique positive definite solution of Z − AZ̄−1A∗ = I. Then
we get

W− = I2n − Y+ = I2n − ZO
+ = (In − Z+)O < 0.

Notice that W−1
− = [(I − Z+)O]−1 = [(I − Z+)−1]O. Then

I2n = W− − (AH)TW−1
− AH

= (In − Z+)O − (AH)T [(I − Z+)−1]OAH

= (In − Z+)O − (AO)TE2n[(I − Z+)−1]OE2nA
O

= (In − Z+)O − (A∗)O[ ¯(I − Z+)−1]OAO

= (In − Z+)O − (A∗ ¯(I − Z+)−1A)O,

which gives
(In − Z+)−A∗(In − Z̄+)−1A = In.

Denote X− = I − Z+. Then X− < 0 and X− − A∗X̄−1
− A = In which implies

that X− is a negative definite solution of (1.4). The uniqueness of X− follows
from the uniqueness of the negative definite solution of (3.3). �

Remark 3.1. Consider NME (1.4) with any given complex A, taking F(X) =
−X̄ and B = I + A∗A, we have I − B = −A∗A ≤ −A∗X̄−1A ≤ 0 for any
X ∈ [I,B]. From Lemma 2.1 in [22] for matrix equation X + A∗F(X)A = I,
(1.4) has a positive definite solution in [I,B]. But here in Theorem 3.1, we
show not only the existence, but also the uniqueness of the positive definite
solution X+. Moreover, we offer the basic fixed-point iteration for X+ which
will be used to prove our main result Theorem 3.3.

Iteration (3.2) is very simple and intuitive. For the convergence rate of it,
we have

Xk+1 −X+

= A∗(X̄−1
k − X̄−1

+ )A

= A∗X̄−1
k (X̄+ − X̄k)X̄−1

+ A

= A∗(X̄−1
k − X̄−1

+ + X̄−1
+ )(X̄+ − X̄k)X̄−1

+ A

= A∗(X̄−1
k − X̄−1

+ )(X̄+ − X̄k)X̄−1
+ A+A∗X̄−1

+ (X̄+ − X̄k)X̄−1
+ A

= A∗X̄−1
+ (X̄+ − X̄k)X̄−1

k (X̄+ − X̄k)X̄−1
+ A+A∗X̄−1

+ (X̄+ − X̄k)X̄−1
+ A.
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Then

‖Xk+1 −X+‖ ≤ ‖X̄−1
+ A‖2 · ‖X̄−1

k ‖ · ‖X̄+ − X̄k‖2 + ‖X̄−1
+ A‖2 · ‖X̄+ − X̄k‖

= (‖X̄−1
+ A‖2 · ‖X̄−1

k ‖ · ‖X̄+ − X̄k‖+ ‖X̄−1
+ A‖2) · ‖X̄+ − X̄k‖.

Since Xk → X+ as k → ∞, for any ε > 0, there exists an integer M > 0 such
that for any k > M , we have

‖Xk+1 −X+‖ ≤ (‖X̄−1
+ A‖2 + ε)‖X+ −Xk‖.

Moreover, we can obtain the following.

Theorem 3.2. For iteration (3.2), we have

(3.4) ‖X2k −X+‖ ≤ ‖X̄−1
+ A‖2 · ‖X2k−1 −X+‖

for all k ≥ 1 and

(3.5) lim sup
n→∞

n
√
‖Xn −X+‖ ≤ ρ(X−1

+ Ā · X̄−1
+ A) < 1.

Proof. Notice that for all k ≥ 1,

Xk+1 −X+(3.6)

= A∗X̄−1
+ (X̄+ − X̄k)X̄−1

k (X̄+ − X̄k)X̄−1
+ A+A∗X̄−1

+ (X̄+ − X̄k)X̄−1
+ A.

Combining (3.6) with the fact that {X2k} is increasing and converges to X+

and {X2k+1} is decreasing and converges to X+, we have

0 < X+ −X2k ≤ A∗X̄−1
+ (X̄2k−1 − X̄+)X̄−1

+ A

for all k ≥ 1, from which (3.4) follows.
Moreover, since

X2k+1 −X+

= A∗X̄−1
+ (X̄+ − X̄2k)X̄−1

+ A+A∗X̄−1
+ (X̄+ − X̄2k)X̄−1

2k (X̄+ − X̄2k)X̄−1
+ A

= A∗X̄−1
+ (X̄+ − X̄2k)1/2[I + (X̄+ − X̄2k)1/2X̄−1

2k (X̄+ − X̄2k)1/2]

(X̄+ − X̄2k)1/2X̄−1
+ A,

and for arbitrary ε > 0, there exists a k0, such that

(X̄+ − X̄2k)1/2X̄−1
2k (X̄+ − X̄2k)1/2 ≤ εI

for all k ≥ k0. Then

0 ≤ X2k+1 −X+ ≤ (1 + ε)A∗X̄−1
+ (X̄+ − X̄2k)X̄−1

+ A

for all k ≥ k0. Denote K = (X−1
+ Ā) · (X̄−1

+ A). We obtain that for all k ≥ k0,

0 < X+ −X2k ≤ A∗X̄−1
+ (X̄2k−1 − X̄+)X̄−1

+ A

≤ (1 + ε)(A∗X̄−1
+ )(ATX−1

+ )(X+ −X2(k−1))X
−1
+ Ā · X̄−1

+ A

= (1 + ε)K∗(X+ −X2(k−1))K

≤ (1 + ε)2(K2)∗(X+ −X2(k−2))K
2
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≤ (1 + ε)3(K3)∗(X+ −X2(k−3))K
3

≤ (1 + ε)k−k0(Kk−k0)∗(X+ −X2k0
)Kk−k0 .

Then

0 < X+ −X2k+2 ≤ (1 + ε)k−k0+1(Kk−k0+1)∗(X+ −X2k0)Kk−k0+1

and

0 < X2k+1 −X+

≤ (1 + ε)A∗X̄−1
+ (X̄+ − X̄2k)X̄−1

+ A

≤ (1 + ε)k−k0+1(A∗X̄−1
+ )(K̄k−k0)∗(X̄+ − X̄2k0)K̄k−k0(X̄−1

+ A)

which gives

‖X+ −X2k+2‖ ≤ (1 + ε)k−k0+1‖Kk−k0+1‖2 · ‖X+ −X2k0
‖,

and

‖X2k+1 −X+‖ ≤ (1 + ε)k−k0+1 · ‖X̄−1
+ A‖2 · ‖Kk−k0‖2 · ‖X+ −X2k0‖.

Observe that ρ(A) = limk→∞
k
√
‖Ak‖, then we have

lim sup
n→∞

n
√
‖Xn −X+‖ ≤

√
1 + ε · ρ(K) =

√
1 + ε · ρ(X−1

+ Ā · X̄−1
+ A).

Using Lemma 2.4 and Lemma 3.1, we obtain that

ρ1/2(X−1
+ Ā · X̄−1

+ A) = ρ1/2(AX−1
+ · ĀX̄−1

+ ) = ρ((AX−1
+ )H)

= ρ(En(AX−1
+ )O) = ρ(EnA

O(X−1
+ )O)

= ρ((XO
+)−1EnA

O) = ρ((XO
+)−1AH)

= ρ(W−1
+ AH) < 1,

where W+ is the unique positive definite solution of NME (3.3). Therefore,

lim sup
n→∞

n
√
‖Xn −X+‖ ≤

√
1 + ε · ρ(X−1

+ Ā · X̄−1
+ A) < 1.

Since ε > 0 is arbitrary, we have

lim sup
n→∞

n
√
‖Xn −X+‖ ≤ ρ(X−1

+ Ā · X̄−1
+ A) < 1.

�

In the following, using the famous Sherman-Morrison-Woodbury formula,
we give an elegant relationship between NME (1.4) and the extensively studied
nonlinear matrix equation Y + B∗Y −1B = Q where B = ĀA and Q = I +
A∗A+ ĀĀ∗.

Theorem 3.3. (i) Let X+ > 0 be the unique positive definite solution of (1.4).
Then X+ = YL − ĀĀ∗ where YL is the maximal positive definite solution of

(3.7) Y + (ĀA)∗Y −1(ĀA) = I +A∗A+ ĀĀ∗.
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(ii) Moreover, if A is nonsingular, let X− < 0 be the unique negative definite
solution of (1.4), then X− = Zl−AA∗, where Zl is the minimal positive definite
solution of

(3.8) Z + (AĀ)∗Z−1(AĀ) = I +AA∗ + Ā∗Ā.

Proof. (i) Consider the nonlinear matrix equation (3.7). Denote Q = I+A∗A+
ĀĀ∗. Observe that for any λ ∈ C, it holds that

ψ(λ) = Q+ λĀA+ λ−1(ĀA)∗

= I + ĀĀ∗ +A∗A+ λĀA+ λ̄(ĀA)∗

= I + ĀĀ∗ + |λ|2A∗A+ λĀA+ λ̄(ĀA)∗

= I + (Ā+ λ̄A∗)(Ā∗ + λA)

> 0.

Applying Lemma 2.2, we know that the NME (3.7) always has a positive defi-
nite solution and thus has the maximal positive definite solution YL.

From Theorem 3.1, equation (1.4) always has a unique positive definite so-
lution, denoted by X+, and the sequence {Xn} generated by (3.2) converges
to X+.

Now consider the subsequence {X2k+1}∞k=0 consisting of the odd elements
of {Xn} in (3.2). We have X1 = I +A∗A and for all k ≥ 1,

(3.9)

X2k+1 = I +A∗X̄−1
2k A

= I +A∗(I + Ā∗X−1
2k−1Ā)−1A

= I +A∗[I − Ā∗(X2k−1 + ĀĀ∗)−1Ā]A

= I +A∗A− (A∗Ā∗)(X2k−1 + ĀĀ∗)−1ĀA,

where Sherman-Morrison-Woodbury formula is used in the third equality. Then

X2k+1 + ĀĀ∗ = I +A∗A+ ĀĀ∗ − (A∗Ā∗)(X2k−1 + ĀĀ∗)−1ĀA.

Denote

(3.10) Yk = X2k+1 + ĀĀ∗, k = 0, 1, 2, . . . .

Obviously, X2k+1 ≥ I. Then Yk ≥ I + ĀĀ∗, k = 1, 2, . . . and {Yk} satisfies{
Y0 = X1 + ĀĀ∗ = Q,
Yk = Q− (ĀA)∗Y −1

k−1(ĀA), k = 1, 2, . . . .

Applying Lemma 2.2 to NME (3.7), we obtain that {Yk} converges to YL, the
maximal positive definite solution of equation (3.7).

Since {Xn} converges to the unique positive definite solution X+ of equation
(1.4), so does the odd subsequence {X2k+1}∞k=0. Taking limits on both sides of
(3.10) gives

YL = lim
k→∞

Yk = lim
k→∞

X2k+1 + ĀĀ∗ = X+ + ĀĀ∗,
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that is, X+ = YL − ĀĀ∗, where YL is the maximal positive definite solution of
(3.7).

Moreover, according to Theorem 3.1, if A is nonsingular, then (1.4) has
a unique negative definite solution X−, and X− = I − Y+, where Y+ is the
unique positive definite solution of Y − AȲ −1A∗ = I. From (i), Y+ + Ā∗Ā is
the maximal positive definite solution of equation

(3.11) Z + (AĀ)Z−1(AĀ)∗ = P, P = I +AA∗ + Ā∗Ā.

Applying Lemma 2.3 to (3.11) gives that

P − (Y+ + Ā∗Ā) = I +AA∗ − Y+ = X− +AA∗

is the minimal positive definite solution Zl of (3.8). That is, X− = Zl − AA∗
which affirms (ii). �

Applying Theorem 3.3, several effective algorithms with elegant numerical
performances such as fixed-point iteration, inversion-free iteration, structure-
preserving doubling algorithm, B. Meini’s Cyclic reduction algorithm and New-
ton iteration for the unique positive definite solution X+ of X −A∗X̄−1A = I
can be obtained immediately from the corresponding algorithms [10, 18, 20]
for the maximal positive definite solution YL of the well-studied NME Y +
B∗Y −1B = Q with B = ĀA,Q = I +A∗A+ ĀĀ∗.

Accelerated fixed-point iteration

(3.12)

{
Y0 = Q,
Yn+1 = Q−B∗Y −1

n B, n = 1, 2, . . . .

Then we have X+ = YL − ĀĀ∗ = limn→∞ Yn − ĀĀ∗.
Inversion-free iteration

(3.13)

 Y0 = Q, 0 < X0 ≤ Q−1,
Xn+1 = Xn(2I − YnXn),
Yn+1 = Q−B∗Xn+1B, n = 1, 2, . . . .

Then we have X+ = YL − ĀĀ∗ = limn→∞ Yn − ĀĀ∗.
Structure-preserving Doubling Algorithm (SDA)

(3.14)


A0 = ĀA, Q0 = Q, P0 = 0,
An+1 = An(Qn − Pn)−1An,
Qn+1 = Qn −A∗n(Qn − Pn)−1An,
Pn+1 = Pn +An(Qn − Pn)−1A∗n, n = 1, 2, . . . .

Then we have X+ = YL − ĀĀ∗ = limn→∞Qn − ĀĀ∗.
Cyclic Reduction Algorithm (CRA)

(3.15)


A0 = ĀA, Q0 = Q, Y0 = Q,
An+1 = AnQ

−1
n An,

Qn+1 = Qn −A∗nQ−1
n An −AnQ

−1
n A∗n,

Yn+1 = Yn −A∗nQ−1
n An, n = 1, 2, . . . .
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Then we have X+ = YL − ĀĀ∗ = limn→∞ Yn − ĀĀ∗.

Newton’s iteration
Take Y0 = Q, B = ĀA. For n = 1, 2, . . . , compute Ln = Y −1

n−1B, and solve

(3.16) Yn − L∗nYnLn = Q− 2LnB

until ‖Yn − Yn+1‖ < ε. Then X+ = YL − ĀĀ∗ = limn→∞ Yn − ĀĀ∗.

Remark 3.2. As to the convergence rate of these algorithms, we have
(i) Iteration (3.2) is actually the basic fixed-point theorem, and it is linear

convergent from (3.4) in Theorem 3.2;
(ii) Iteration (3.12) can be regarded as an accelerated version of iteration

(3.2). It is also linear convergent with a convergence rate about twice of that
of (3.2) provided ‖X̄−1

+ A‖ < 1. In fact, from (3.10) we know that the sequence
{Yn} generated by (3.12) is actually the odd elements in the sequence generated
by (3.2) plus ĀĀ∗. Moreover, we have

‖Yn+1 − YL‖ = ‖X2n+3 + ĀĀ∗ − (X+ + ĀĀ∗)‖ = ‖X2n+3 −X+‖
≤ ‖X̄−1

+ A‖2‖X2n+2 −X+‖ ≤ ‖X̄−1
+ A‖4‖X2n+1 −X+‖

= ‖X̄−1
+ A‖4‖Yn − YL‖

according to Theorem 3.2;
(iii) Iteration (3.13) can be regarded as the inversion-free variation of algo-

rithm (3.12). It is also linear convergent with roughly the same convergence
rate with that of (3.12), while (3.13) does not require the computation of matrix
inversion which may turn it to be more numerically reliable.

(iv) Algorithms SDA and CRA are actually the same and proved to have
quadratically convergence rate, low computational cost per step and good nu-
merical stability in [18, 20], so do iterations (3.14) and (3.15). Newton’s itera-
tion is proved to have quadratical convergence rate and good numerical stability
[10].

Remark 3.3. As to the minimal solution (unique negative definite solution) X−
of NME (1.4) when A is nonsingular, according to Theorem 3.3, X− = Zl−AA∗,
where Zl is the minimal positive definite solution of

Z + (AĀ)∗Z−1(AĀ) = G, G = I +AA∗ + Ā∗Ā,

and G− Zl, denoted by Y+, is the maximal positive definite solution of

(3.17) Y + (AĀ)Y −1(AĀ)∗ = G.

Thus we have

X− = Zl −AA∗ = G− Y+ −AA∗ = (I + Ā∗Ā)− Y+,

which allows us to obtain similar efficient algorithms for X− since we can
obtain the maximal positive definite solution Y+ of (3.17) by the algorithms
(3.12)-(3.16).
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4. Results on nonlinear matrix equation X − A∗X−1A = I

Inspired by Theorem 3.3, we offer in this section an elegant relationship
between the maximal positive definite solutions of the well studied nonlinear
matrix equations

(4.1) X −A∗X−1A = I

and

(4.2) Y +B∗Y −1B = Q,

which are always studied independently so far. Hopefully, it may offer a new
way and a new perspective to consider the solutions of these two matrix equa-
tions and their corresponding applied problems.

Consider the following matrix equation

(4.3) Y + (A2)∗Y −1A2 = I +AA∗ +A∗A.

Denote K = I +AA∗ +A∗A. Observe that for any λ ∈ C,

ψ(λ) = K + λA2 + λ−1(A2)∗

= I +AA∗ +A∗A+ λA2 + λ̄A∗A∗

= I + (A+ λ̄A∗)(A∗ + λA) > 0.

Applying Lemma 2.2, we obtain that (4.3) always has a positive definite solution
and thus has the maximal positive definite solution YL and the minimal positive
definite solution Yl.

Theorem 4.1. Let X+ > 0 be the maximal solution (i.e., the unique positive
definite solution) of (4.1). Then X+ = YL−AA∗; Moreover, if A is nonsingular,
let X− < 0 be the minimal solution (i.e., the unique negative definite solution)
of (4.1), then X− = Yl −AA∗, where YL and Yl are the maximal and minimal
positive definite solutions of (4.3), respectively.

Proof. The proof is similar to that of Theorem 3.3 which is omitted here. �

Theorem 4.1 offers a new and simple way to consider matrix equation X −
A∗X−1A = I. For example, applying Theorem 4.1, several new effective algo-
rithms for the unique positive definite solution X+ of X − A∗X−1A = I can
be obtained immediately from the existed algorithms for the maximal positive
definite solution of Y +B∗Y −1B = K with B = A2 and K = I +AA∗ +A∗A.

Accelerated fixed-point iteration

(4.8)

{
Y0 = K,
Yn+1 = K −B∗Y −1

n B, n = 1, 2, . . . .

Then we have X+ = limn→∞ Yn −AA∗.
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Inversion-free iteration

(4.9)

 Y0 = K, 0 < X0 ≤ K−1,
Xn+1 = Xn(2I − YnXn),
Yn+1 = K −B∗Xn+1B, n = 1, 2, . . . .

Then we have X+ = limn→∞ Yn −AA∗.

Structure-preserving Doubling Algorithm (SDA)

(4.10)


A0 = A2, Q0 = K, P0 = 0,
An+1 = An(Qn − Pn)−1An,
Qn+1 = Qn −A∗n(Qn − Pn)−1An,
Pn+1 = Pn +An(Qn − Pn)−1A∗n, n = 1, 2, . . . .

Then we have X+ = limn→∞Qn −AA∗.

Cyclic Reduction Algorithm (CRA)

(4.11)


A0 = A2, Q0 = K, Y0 = K,
An+1 = AnQ

−1
n An,

Qn+1 = Qn −A∗nQ−1
n An −AnQ

−1
n A∗n,

Yn+1 = Yn −A∗nQ−1
n An, n = 1, 2, . . . .

Then we have X+ = limn→∞ Yn −AA∗.

It is easy to find that (4.11) can be slightly adjusted to
Cyclic Reduction Algorithm (CRA)

(4.11)′


A0 = A2, Q0 = K, X0 = K −AA∗ = I +A∗A,
An+1 = AnQ

−1
n An,

Qn+1 = Qn −A∗nQ−1
n An −AnQ

−1
n A∗n,

Xn+1 = Xn −A∗nQ−1
n An, n = 1, 2, . . . ,

which gives X+ = limn→∞Xn.

Newton’s iteration
Take Y0 = K. For n = 1, 2, . . . , compute Ln = Y −1

n−1B, and solve

(4.12) Yn − L∗nYnLn = K − 2LnB,

until ‖Yn − Yn+1‖ < ε. Then X+ = limn→∞ Yn −AA∗.

Remark 4.1. We point out that here (4.8), (4.9), (4.11) and (4.12) are new,
and (4.10) and (4.11)′ have been obtained in [18] and [20] respectively with
much more complicated analysis and proofs. As to the convergence rates of
these algorithms, we have same results with Remark 3.2.

Remark 4.2. As to the minimal solution (unique negative definite solution) X−
of NME (4.1), applying theorem 4.1, X− = Yl −AA∗, where Yl is the minimal
positive definite solution of

Y + (A2)∗Y −1A2 = H, H = I +AA∗ +A∗A,
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and H − Yl, denoted by Z+, is the maximal positive definite solution of

(4.13) Z +A2Z−1(A2)∗ = H.

Thus we have

X− = Yl −AA∗ = H − Z+ −AA∗ = (I +A∗A)− Z+,

which allows us to obtain similar efficient algorithms for X−.

5. Numerical experiments

In this section, we carry out several numerical experiments to examine the
effectiveness of all the theoretical results. All the programming is implemented
on a PC with 1.7 GHz Pentium IV using MATLAB 7.1.

Example 5.1. Consider a NME in (1.4) with the coefficient matrix A given
by

A =


0.6294− 0.1565i 0.2647 + 0.3115i 0.9150 + 0.3575i 0.9143 + 0.3110i
0.8116 + 0.8315i −0.8049− 0.9286i 0.9298 + 0.5155i −0.0292− 0.6576i
−0.7460 + 0.5844i −0.4430 + 0.6983i −0.6848 + 0.4863i 0.6006 + 0.4121i
0.8268 + 0.9190i 0.0938 + 0.8680i 0.9412− 0.2155i −0.7162− 0.9363i

,
which is generated randomly by the function (2∗rand(4)−1)+i∗(2∗rand(4)−1)
in MATLAB. We compute the unique positive definite solution X+ of equation
(1.4) by algorithms (3.2) and (3.12)-(3.16). We use the spectral norm of the
residuals

Res(Xk) = ‖Xk −A∗X̄−1
k A− I‖, k = 0, 1, 2, . . . ,

to denote the iteration error. A sufficiently accurate unique positive definite
solution of this NME is obtained as

X+ =


2.7315 0.1200 + 0.5372i 1.5523− 0.3407i −0.5077− 0.4204i

0.1200− 0.5372i 2.5649 −0.2717− 0.1620i 0.2258 + 0.6021i
1.5523 + 0.3407i −0.2717 + 0.1620i 3.2606 0.0473− 1.2157i
−0.5077 + 0.4204i 0.2258− 0.6021i 0.0473 + 1.2157i 2.3578

.
To illustrate the convergence rates of these different algorithms, the iter-

ation errors are recorded in Fig. 1. It’s clear that Newton’s iteration find a
good approximation in the smaller number of iterations and the basic fixed-
point iteration gives the more accurate approximation. Moreover, algorithms
SDA(3.14)/CRA(3.15) and Newton’s iteration (3.16) converge much faster than
algorithms (3.2), (3.12) and (3.13) which coincided with the theoretical analy-
sis that (3.14)-(3.16) are convergent quadratically while (3.2), (3.12) and (3.13)
are convergent linearly. Besides, the convergence rate of the inversion-free it-
eration (3.13) is almost the same as that of the accelerated iteration (3.12)
since they are both about twice of the convergence rate of the basic fixed-point
iteration (3.2). All coincide with the theoretical analysis in Remark 3.2.
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Figure 1. The comparison of convergence rates of six differ-
ent iterations for NME (1.4)
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Figure 2. The comparison of convergence rates of six differ-
ent iterations for NME (4.1)

Example 5.2. Consider a NME in (4.1) with the coefficient matrix A given
by

A =


0.7818− 0.2967i −0.7014 + 0.8344i 0.6286− 0.2391i −0.6068 + 0.0616i
0.9186 + 0.6617i −0.4850− 0.4283i −0.5130 + 0.1356i −0.4978 + 0.5583i
0.0944 + 0.1705i 0.6814 + 0.5144i 0.8585− 0.8483i 0.2321 + 0.8680i
−0.7228 + 0.0994i −0.4914 + 0.5075i −0.3000− 0.8921i −0.0534− 0.7402i

,
which is generated randomly by the function (2∗rand(4)−1)+i∗(2∗rand(4)−1)
in MATLAB. We compute the unique positive definite solution X+ of equation
(4.1) by algorithms (4.4) and (4.8)-(4.12). We use the spectral norm of the
residualsRes(Xk) = ‖Xk−A∗X−1

k A−I‖, k = 0, 1, 2, . . . , to denote the iteration
error.
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Table 1. The comparison of running time for 6 different it-
erations for X+ for NME (1.4)

n 25 30 35 40 45 50 55
Iteration (3.2) 0.007372 0.015134 0.015461 0.018847 0.024541 0.030151 0.033979
Iteration (3.12) 0.003870 0.008686 0.007000 0.009382 0.012124 0.015733 0.017241
Iteration (3.13) 0.005230 0.007568 0.009751 0.013121 0.017220 0.019860 0.025749
Iteration (3.15) 0.003606 0.004953 0.006944 0.087765 0.011463 0.015439 0.018471
Iteration (3.16) 0.611129 1.517971 3.463479 7.202781 13.810753 24.988062 44.566569

Table 2. The comparison of running time for 6 different it-
erations for X+ for NME (4.1)

n 25 30 35 40 45 50 55
Iteration (4.4) 0.009595 0.016807 0.019832 0.025675 0.032112 0.041134 0.053184
Iteration (4.8) 0.006339 0.007689 0.010795 0.012792 0.017033 0.021357 0.025466
Iteration (4.9) 0.005408 0.010015 0.013097 0.014836 0.015886 0.019715 0.023974
Iteration (4.11) 0.003775 0.005281 0.006776 0.008599 0.012154 0.014409 0.018157
Iteration (4.12) 0.672660 1.534046 3.471230 7.127257 13.828581 25.361517 57.602918

A sufficiently accurate unique positive definite solution of this NME is ob-
tained as

X+ =


2.7202 −0.1254 + 0.4030i 0.0044 + 0.3785i −0.3870 + 1.2663i

−0.1254− 0.4030i 2.3438 −0.1387− 0.3634i 0.5443 + 0.7080i
0.0044− 0.3785i −0.1387 + 0.3634i 2.1001 0.2547 + 0.3469i
−0.3870− 1.2663i 0.5443− 0.7080i 0.2547− 0.3469i 2.8258

.
The convergence rates of these algorithms are illustrated in Fig. 2.

Example 5.3. In this example, we compare the time required to compute a
sufficient accurate solution by these six different algorithms. We first construct
a circular matrix C ∈ Rn×n with the first row c(n) given by

c(n) = [1− i, 1√
2

+ (−1)2
√

2i, . . . ,
1√
n

+ (−1)n
√
ni],

where n ≥ 1 is an integer. Then we consider two NMEs in the form of
(1.4) and (4.1) with A = C

2‖C‖ . Here we use the practical stopping criterion

log(Res(Xk)) ≤ −32, where Res(Xk) are defined as in Examples 5.1 and 5.2
for NMEs (1.4) and (4.1), respectively. Now we compute the unique positive
definite solution X+ of NMEs (1.4) and (4.1) for different value of n. The run-
ning time (unit: second) needed are respectively recorded in Table 1 and Table
2, which show that in both cases, the structure-preserving doubling algorithm
(SDA) and the cyclic reduction algorithm (CRA) are the most efficient.
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