• Title/Summary/Keyword: New catalyst

Search Result 802, Processing Time 0.029 seconds

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process (Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.552-561
    • /
    • 2021
  • For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.

Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes (9-Arylated Carbazole을 주리간드로 사용하는 Heteroleptic Iridium(III) 착물의 합성과 분광학적 특성)

  • Oh, Se Hwan;Yum, Eul Kgun;Kim, Younghoon;Im, Yung-Jae;Heo, Jungseok;Kim, Yeong-Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.180-189
    • /
    • 2021
  • N-Heteroaryl carbazoles were synthesized with thermal heating in the presence of Cu(I) catalyst and used as main ligands for the preparation of heteroleptic Ir(III) complexes. In these Ir(III) complexes, 6-membered ring structures of Ir-ligand chelation were found by single crystal X-ray diffraction. The blue shift of photoluminescence for Ir(III) complexes was observed in the case of the strong bond formation between Ir and ancillary ligands. It also has been clearly shown that the higher electron density of heteroaryl aromatic ring influenced shorter maximum photoluminescence wavelength (λmax) of Ir(III) complexes. Since the new Ir(III) complexes showed good phosphorescent emission, they could be potentially used as OLED materials in the emission Layer.

Formation of Silica Nanowires by Using Silicon Oxide Films: Oxygen Effect (산화 실리콘 막을 이용한 실리카 나노 와이어의 형성 : 산소 효과)

  • Yoon, Jong-Hwan
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1203-1207
    • /
    • 2018
  • In this study, silica nanowires were formed using silicon oxide films with different oxygen contents, and their microstructure and physical properties were compared with those of silica nanowires formed using Si wafers. The silicon oxide films were fabricated by using a plasma-enhanced chemical vapor deposition method. Silica nanowires were formed by thermally annealing silicon oxide films coated with nickel films as a catalyst. In the case of silicon oxide films having an oxygen content of approximately 50 at.% or less, the formation mechanism, microstructure, and physical properties of the nanowires were not substantially different from those of the silicon wafer. In particular, the uniformity of the thickness showed better behavior in the silicon oxide films. These results imply that silicon oxide films can be used as an alternative for fabricating high-quality silica nanowires at low cost.

Information Politics of Ukraine in the Field of Freedom of Conscience in a Pandemic

  • Mykola, Palinchak;Dobrodum, Olga;Khrypko, Svitlana;Gold, Olga;Ostashchuk, Ivan;Vlasenko, Inna;Lobanchuk, Olena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.222-228
    • /
    • 2022
  • In today's era of digital technologies, the problem of religious communication in the cyberspace is being actualized, since the globality and accessibility of the WWW makes it one of the most effective and promising channels for transmitting various kinds of messages, including those of a religious nature. Today, religious organizations and movements pay the closest attention to the virtual media space, not only using it to attract new followers, but also for religious PR, image-making and branding, informing the world about themselves through news from the life of the organization and its followers. An equally important form of electronic communication in the online sphere is currently the interaction of various religious movements and religious cultures in general, or the dialogue of confessions in particular. Research in the digital space makes it possible to identify important trends in religious spheres based on the analysis of the flow of information on the Internet, to demonstrate the specifics of individual media outlets and the consequences of their activities for interreligious dialogue, to study the role of the Internet in changing religious beliefs, the possibility of changing religious identity, retrospective development of religious enlightenment at the turn of the century, to determine the vectors of possible interreligious interaction and discuss the role of digital technologies in the work of religious structures, to state the need to continue an active dialogue between representatives of religious movements, to hold expert seminars on interreligious dialogue on a regular basis, and to record the risks generated by the digital space. Thus, the coronavirus pandemic served as a background and context, a litmus test and a catalyst for accelerating and intensifying interreligious, interfaith dialogue and dialogue between religious organizations and society.

Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?

  • Jaehyun Kim;Ho Won Jang
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.175-188
    • /
    • 2023
  • Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.

A Study on Efficient Mixnet Techniques for Low Power High Throughput Internet of Things (저전력 고속 사물 인터넷을 위한 효율적인 믹스넷 기술에 대한 연구)

  • Jeon, Ga-Hye;Hwang, Hye-jeong;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.246-248
    • /
    • 2021
  • Recently data has been transformed into a data economy and society that acts as a catalyst for the development of all industries and the creation of new value, and COVID-19 is accelerating digital transformation. In the upcoming intelligent Internet of Things era, the availability of decentralized systems such as blockchain and mixnet is emerging to solve the security problems of centralized systems that makes it difficult to utilize data safely and efficiently. Blockchain manages data in a transparent and decentralized manner and guarantees the reliability and integrity of the data through agreements between participants, but the transparency of the data threatens the privacy of users. On the other hand, mixed net technology for protecting privacy protects privacy in distributed networks, but due to inefficient power consumption efficiency and processing speed issues, low cost, light weight, low power consumption Internet Hard to use. In this paper, we analyze the limitations of conventional mixed-net technology and propose a mixed-net technology method for low power consumption, high speed, and the Internet of things.

  • PDF

Resistance of Polystyrene-Impregnated Glued Laminated Lumbers after Exposure to Subterranean Termites in a Field

  • Dede HERMAWAN;Mahdi MUBAROK;Imam Busyra ABDILLAH;Yusuf Sudo HADI;Cossey YOSI;Aujchariya CHOTIKHUN;Rohmah PARI;Gustan PARI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.70-86
    • /
    • 2024
  • Termites are a serious threat to wood-based products in Indonesia. This study investigated the termite resistant property of glulam made from polystyrene-modified wood. Three tropical fast-growing wood species, namely mangium (Acacia mangium), manii (Maesopsis eminii), and rubberwood (Hevea brasiliensis), were prepared for flat-sawn laminae. After getting air-dried condition, the laminae were impregnated with polystyrene using potassium peroxydisulphate as a catalyst followed by polymerization at 80℃. Polystyrene-impregnated and control glued-laminated lumbers (glulams) were manufactured, and solid wood was provided. Three wood species and three wood products with six replicates were exposed in a field in Bogor, Indonesia, for four months, and before the tests, their density and moisture content were measured. At the end of the field tests, the weight loss and protection levels of each test sample were determined. A completely randomized factorial design was used for data analysis. The weight percentage gains for mangium, manii, and rubberwood were 22.30%, 18.22%, and 10.44%, respectively. The results showed that manii belonged to low-density wood, whereas the other two woods were medium-density wood, and the moisture content was the ambient moisture content, typical of the Bogor area. Regarding weight loss and protection level, mangium was the most durable against subterranean termite attacks, followed by rubberwood and manii. Among the wood products, the polystyrene-impregnated glulam presented the highest durability, followed by the control glulam and solid wood. Therefore, mangium and rubberwood polystyrene-impregnated glulams are recommended for future product development.

Performance and the Current Reform Process of Regional Development Agencies in England (영국 지역발전기구의 활동 성과와 구조재편 동향)

  • Lee, Jong-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.553-567
    • /
    • 2011
  • Since their establishment in 1999, Regional Development Agencies in England have been a critical catalyst for sustaining regional development, by linking the central government and the region. Nevertheless, the new Coalition Government formed in May 2010 is to abolish RDAs and is to be replaced by Local Enterprise Partnerships(LEP). This article looks at the performance and the present reform process of the English Regional Development Agencies(RDA). It argues that RDAs have been a sort of laboratory to expose the possibility of realizing the new regionalist approach away from the government-centered approach. Nevertheless, the case of RDAs in England shows that the RDA model is less likely to be effective without substantial devolution. It shows that the extent to which RDAs contribute to the regional economy tends to be much higher in soft infra-centered projects, such as business supports and skills development, than physical infrastructure projects. It argues that the LEP model, which is to replace RDAs, is controversial, especially in terms of spatial boundary and financial structure.

  • PDF

Effect of Support Geometry on Catalytic Activity of Pt/CeO2 Nanorods in Water Gas Shift Reaction (Water Gas Shift 반응에서 Pt/CeO2 촉매의 지지체구조에 따른 촉매활성 연구)

  • Im, Hyo Been;Kwon, Soon Jin;Byun, Chang Ki;Ahn, Hee Sung;Koo, Kee Young;Yoon, Wang Lai;Yi, Kwang Bok
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.577-585
    • /
    • 2014
  • Nanorod and particle shape $CeO_2$ were synthesized via hydrothermal process and precipitation method, respectively, and used as supports of Pt catalyst for water gas shift (WGS) reaction. Three different durations (12, 48, and 96h) for hydrothermal process were applied for the preparation of nanorod type $CeO_2$. 1.0 wt% of Pt was loaded on the prepared supports with incipient wetness method prior to the catalytic activity tests that were carried out at a GHSV of $95,541h^{-1}$, and a temperature range of 200 to $360^{\circ}C$. Varying duration of hydrothermal process led to the difference in physical characteristics of $CeO_2$ nanorods, such as aspect ratio, BET surface area, pore diameter, and pore volume. Consequently, the catalytic activities of Pt/$CeO_2$ nanorods were affected by the physical characteristics of the supports and appeared to be in the order of Pt/$CeO_2$(12) > Pt/$CeO_2$(48) > Pt/$CeO_2$(96). The comparison of the catalytic activities and results of the analysis (XPS, XRD, SEM, BET and TPR) for the supports revealed that the activity of the catalysts depends on chemical states of the Pt and the support materials in the temperature range that is lower than $280^{\circ}C$. However, the activity is rather dependent on the physical characteristic of the supports because the increased gas velocity limits the mass transfer of reactants in micropores of the supports.