Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.10.552

Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process  

Lee, Jong-Ho (Department of Chemistry, Hanseo University)
Lee, Young-Ki (School of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Jig (School of Advanced Materials Engineering, Sungkyunkwan University)
Oh, Han-Jun (Department of Materials Science, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.31, no.10, 2021 , pp. 552-561 More about this Journal
Abstract
For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
Keywords
photocatalyst; boric acid; $TiO_2$; plasma electrolytic oxidation; dye degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Liu, Y. Liu, X. Wang, N. Hu, Y. Li, C. Li, Y. Meng and Y. An, Appl. Surf. Sci., 561, 149969 (2021).   DOI
2 J. Hou, J. Zhou, Y. Liu, Y. Yang, S. Zheng and Q. Wang, J. Alloys Compd., 849, 156439 (2020).
3 L. Zhang, Q. Shen, L. Yu, F. Huang, C. Zhang, J. Sheng, F. Zhang, D. Cheng and H. Yang, CrystEngComm, 22, 5481 (2020).   DOI
4 D. Chen, D. Yang, Q. Wang and Z. Jiang, Ind. Eng. Chem. Res., 45, 4110 (2006).   DOI
5 E. Finazzi, C. D. Valentin and G. Pacchioni, J. Phys. Chem. C, 113, 220 (2009).   DOI
6 X. Lan, L. Wang, B. Zhang, B. Tian and J. Zhang, Catal. Today, 224, 163 (2014).   DOI
7 W. Liu, D. Liu, K. Wang, X. Yang, S. Hu and L. Hu, Nanoscale Res. Lett., 14, 203 (2019).   DOI
8 Y. Wang, C. Zhu, G. Zuo, Y. Guo, W. Xiao, Y. Dai, J. Kong, X. Xu, Y. Zhou, A. Xie, C. Sun and Q. Xian, Appl. Catal., B, 278, 119298 (2020).   DOI
9 I. Ganesh, Mol. Catal., 451, 51 (2018).   DOI
10 W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai, J. Am. Chem. Soc., 126, 4782 (2004).   DOI
11 S. C. Moon, H. Mametsuka, S. Tabata and E. Suzuki, Catal. Today, 58, 125 (2000).   DOI
12 X. Zhou, F. Peng, H. Wang, H. Yu and J. Yang, Electrochem. Commun., 13, 121 (2011).   DOI
13 J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, S.-J. Suh and H.-J. Oh, Korean J. Mater. Res., 29, 790 (2019).   DOI
14 J.-H. Lee, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Ceram. Int., 41, 11899 (2015).   DOI
15 L. Liu, N. Hu, Y. L. An, X. Y. Du, X. Zhang, Y. Li, Y. Zeng and Z. Cui, Materials, 13, 4760 (2020).   DOI
16 N. Patel, A. Dashora, R. Jaiswal, R. Fernandes, M. Yadav, D. C. Kothari, B. L. Ahuja and A. Miotello, J. Phys. Chem. C, 119, 18581 (2015).   DOI
17 M. Quesada-Gonzalez, K. Baba, C. Sotelo-Vazquez, P. Choquet, C. J. Carmalt, I. P. Parkin and N. D. Boscher, J. Mater. Chem. A, 5, 10836 (2017).   DOI
18 J.-H. Lee, S. Heo, J.-I. Youn, Y.-J. Kim, I.-K. Kim, K.-W. Jang and H.-J. Oh, Korean J. Mater. Res., 27, 569 (2017).   DOI
19 X. Lu, B. Tian, F. Chen and J. Zhang, Thin Solid Films, 519, 111 (2010).   DOI