Browse > Article
http://dx.doi.org/10.14478/ace.2021.1013

Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes  

Oh, Se Hwan (Department of Chemistry, Chungnam National University)
Yum, Eul Kgun (Department of Chemistry, Chungnam National University)
Kim, Younghoon (Department of Chemistry, Chungnam National University)
Im, Yung-Jae (Department of Chemistry, Chungnam National University)
Heo, Jungseok (Department of Chemistry, Chungnam National University)
Kim, Yeong-Joon (Department of Chemistry, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.2, 2021 , pp. 180-189 More about this Journal
Abstract
N-Heteroaryl carbazoles were synthesized with thermal heating in the presence of Cu(I) catalyst and used as main ligands for the preparation of heteroleptic Ir(III) complexes. In these Ir(III) complexes, 6-membered ring structures of Ir-ligand chelation were found by single crystal X-ray diffraction. The blue shift of photoluminescence for Ir(III) complexes was observed in the case of the strong bond formation between Ir and ancillary ligands. It also has been clearly shown that the higher electron density of heteroaryl aromatic ring influenced shorter maximum photoluminescence wavelength (λmax) of Ir(III) complexes. Since the new Ir(III) complexes showed good phosphorescent emission, they could be potentially used as OLED materials in the emission Layer.
Keywords
N-heteroaryl carbazoles; OLED materials; Heteroleptic Ir(III) complexes; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organiclight emitting device, J. Appl. Phys., 90, 5048 (2001).   DOI
2 T. Yu, L. Liu, Z. Xie, and Y. Ma. Progress in small-molecule luminiscent materials for organic light-emitting diodes, Sci. China Chem., 58, 907-915 (2015).   DOI
3 H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Recent progress in metal-organic complexes for optoelectronic applications, Chem. Soc. Rev., 43, 3259 (2014).   DOI
4 H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, and J.-J. Kim, Sky-blue phosphorescent OLED with 34.1% external quantum efficiency using a low refractive index electron transporting layer, Adv. Mater., 28, 4920-4925 (2016).   DOI
5 A. R. B.M. Yusoff, A. J. Huckba, and M. K. Nazeeruddin, Phosphorescent neutral iridium (III) complexes for organic light-emitting diodes, Top. Curr. Chem., 375, 39 (2017),   DOI
6 N. Okamura, K. Ishiguro, T. Maeda, and S. Yagi, Luminescent properties of novel bis-cyclometalated iridium(III) complex bearing a phosphine oxide-appended diketonate ligand for solution-processed multilayer OLEDs, Chem. Lett., 46, 1086-1089 (2017).   DOI
7 Z. Chen, H. Zhang, D. Wen, W. Wu, Q. Zeng, S. Chen, and W.-Y. Wong, A simple and efficient approach toward deep-red to near-infrared-emitting iridium(III) complexes for organic light-emitting diodes with external quantum efficiencies of over 10%, Chem. Sci., 11, 2342-2349 (2020).   DOI
8 P. Ledwon, Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications, Org. Electron., 75, 105422 (2019).   DOI
9 B. Wex and B. R. Kaafarani, Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications, J. Mater. Chem. C, 5, 8622-8653 (2017).   DOI
10 M. Hong, M. K. Ravva, P. Winget, and J.-L. Bredas, Effect of substituents on the electronic structure and degradation process in carbazole derivatives for blue OLED host materials, Chem. Mater., 5791-5798 (2016).
11 C. S. Oh, D. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman, and J. Y. Lee, Dihedral angle control of blue thermally activated delayed fluorescent emitters through donor substitution position for efficient reverse intersystem crossing, ACS Appl. Mater. Interfaces, 10, 35420-3542 (2018).   DOI
12 J. Jayakumar, T-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin, and C.-H. Cheng, Pyridine-carbonitrile-carbazole-based delayed fluorescence materials with highly congested structures and excellent OLED performance, ACS Appl. Mater. Interfaces, 11, 21042-21048 (2019).   DOI
13 J. H. Cho, Y.-S. Ryu, S. H. Oh, J. K. Kwon, and E. K. Yum, Diversification of carbazole by LiCl-mediated CuI reaction, Bull. Korean Chem. Soc., 32, 2461-2464 (2011).   DOI
14 E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Fro1hlich, L. De Cola, A. V. Dijken, M. Bu1chel, and H. Borner, Blue-emitting iridium complexes with substituted 1,2,4-triazole ligands? Synthesis, photophysics, and devices, Inorg. Chem., 46, 11082-11093 (2007).   DOI
15 S.-Y. Baek, S.-Y. Kwak, S.-T. Kim, K. Y. Hwang, H. Koo, W.-J. Son, B. Choi, S. Kim, H. Choi, and M.-H. Baik, Ancillary ligand increases the efficiency of heteroleptic Ir-based triplet emitters in OLED devices, Nat. Commun., 11, 2292 (2020).   DOI
16 J. K. Kwon, J.H. Cho, Y.-S. Ryu, S. H. Oh, and E. K. Yum, N-arylation of carbazole by microwave-assisted ligand-free CuI reaction, Tetrahedron, 67, 4820-4825 (2011).   DOI
17 (a) A. L. Spek, PLATON, an integrated tool for the analysis of the results of a single crystal structure determination, Acta Crystallogr. Sect. A, 46, C34 (1990).
18 F. H. Case, The preparation of hydrazidines and as-triazines related to substituted 2-cyanopyridines, J. Org. Chem., 30, 931-933 (1965).   DOI
19 A. R. McDonald, M. Lutz, L. S. von Chrzanowski, G. P. M. van Klink, A. L.Spek, and G. von Koten, Probing the mer- to fac-isomerization of tris-cyclometallated homo and heteroleptic (C,N)3 iridium(III) complexes, Inorg. Chem., 47, 6681-6691 (2008).   DOI
20 M. Nonoyama, Benzo[h]quinolin-10-yl-N iridium(III) complexes, Bull. Chem. Soc. Jpn., 47, 767 (1974).   DOI
21 S. Lamansky, P. Djurovuch, O. Murpky, F. Abdel-Razzaq, H. Lee, P. E. Adachi, C. Burrows, and M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc., 123, 4304-4312 (2001).   DOI
22 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Highly efficient phosphorescent emissionfrom organicelectroluminescent device, Nature, 395, 151-154 (1998).   DOI
23 M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Guedel, M. Fortsch, and H.-B. Buergi, Facial tris cyclometalated Rh3+ and Ir3+ complexes: Their synthesis, structure, and optical spectroscopic properties, Inorg. Chem., 33, 545-550 (1994).   DOI
24 (b) A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht (1998).
25 S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. and Li, J.-X. Tang, Recent advances in organic light-emitting diodes: Toward smart lighting and displys, Mater. Chem. Front., 4, 788-820 (2020).   DOI
26 M. Aleksanrova, Specifics and challenges to flexible organic light-emitting devices, Adv. Mater. Sci. Eng., 2016, Article ID 4081697 (2016).
27 Y. G. Ma, H. Y. Shen, and C. M. Che, Electroluminescense from triplet metal-ligand chrage-transfer excited state of transition metal complexes, Synth. Met., 94, 245 (1998).   DOI