• 제목/요약/키워드: Neutral-point potential

검색결과 59건 처리시간 0.019초

A Novel Modulation Method for Three-Level Inverter Neutral Point Potential Oscillation Elimination

  • Yao, Yuan;Kang, Longyun;Zhang, Zhi
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.445-455
    • /
    • 2018
  • A novel algorithm is proposed to regulate the neutral point potential in neutral point clamped three-level inverters. Oscillations of the neutral point potential and an unbalanced dc-link voltage cause distortions of the output voltage. Large capacitors, which make the application costly and bulky, are needed to eliminate oscillations. Thus, the algorithm proposed in this paper utilizes the finite-control-set model predictive control and the multistage medium vector to solve these issues. The proposed strategy consists of a two-step prediction and a cost function to evaluate the selected multistage medium vector. Unlike the virtual vector method, the multistage medium vector is a mixture of the virtual vector and the original vector. In addition, its amplitude is variable. The neutral point current generated by it can be used to adjust the neutral point potential. When compared with the virtual vector method, the multistage medium vector contributes to decreasing the regulation time when the modulation index is high. The vectors are rearranged to cope with the variable switching frequency of the model predictive control. Simulation and experimental results verify the validity of the proposed strategy.

A Novel Virtual Space Vector Modulation Strategy for the Neutral-Point Potential Comprehensive Balance of Neutral-Point-Clamped Converters

  • Zhang, Chuan-Jin;Tang, Yi;Han, Dong;Zhang, Hui;Zhang, Xiao;Wang, Ke
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.946-959
    • /
    • 2016
  • A novel Virtual Space Vector (VSV) modulation strategy for complete control of potential neutral point (NP) issues is proposed in this paper. The neutral point potential balancing problems of multi-level converters, which include elimination of low frequency oscillations and self-balancing for NP dc unbalance, are investigated first. Then a set of improved virtual space vectors with dynamic adjustment factors are introduced and a multi-objective optimization algorithm which aims to optimize these adjustment factors is presented in this paper. The improved virtual space vectors and the multi-objective optimization algorithm constitute the novel Virtual Space Vector modulation. The proposed novel Virtual Space Vector modulation can simultaneously recover NP dc unbalance and eliminate low frequency oscillations of the neutral point. Experiment results show that the proposed strategy has excellent performance, and that both of the neutral point potential issues can be solved.

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Simplified PWM Strategy for Neutral-Point-Clamped (NPC) Three-Level Converter

  • Ye, Zongbin;Xu, Yiming;Li, Fei;Deng, Xianming;Zhang, Yuanzheng
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.519-530
    • /
    • 2014
  • A novel simplified pulse width modulation(PWM) strategy for neutral point clamped (NPC) three-level converter is proposed in this paper.The direct output voltage modulation is applied to reduce the calculation time. Based on this strategy, several optimized control methods are proposed. The neutral point potential balancing algorithm is discussed and a fine neutral point potential balancing scheme is introduced. Moreover, the minimum pulse width compensation and switching losses reduction can be easily achieved using this modulation strategy. This strategy also gains good results even with the unequal DC link capacitor. The modulation principle is studied in detail and the validity of this simplified PWM strategy is experimentally verified in this paper. The experiment results indicated that the proposed PWM strategy has excellent performance, and the neutral point potential can be balanced well with unequal DC link captaincies.

3레벨 NPC 인버터 개방성 고장 시 중성점 전압변동에 관한 연구 (A Study on the Neutral Point Potential Variation under Open-Circuit Fault of Three-Level NPC Inverter)

  • 박종제;박병건;하동현;현동석
    • 전력전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.333-342
    • /
    • 2009
  • 중성점 클램핑 방식(Neutral Point Clamped) 인버터로 알려져 있는 3레벨 NPC 인버터는 그 구조적 특성상 직류-링크(DC-link) 중성점(Neutral Point)에서 전압이 변동한다. 지금까지 많은 논문에서 이 문제에 대한 연구가 진행되었고 다양한 형태의 해결책들이 제시되었다. 그러나 인버터 내부에서 고장이 발생하여 그에 따른 고장허용제어가 NPC 인버터 시스템에 적용되었을 경우 중성점 전압변동은 정상 운전 시 나타나는 전압변동과 다르게 나타나기 때문에 고장허용 제어에 따른 중성점 전압변동에 대한 분석이 필요하다. 본 논문에서는 삼각파 비교 변조방법을 시스템에 적용하였을 경우 정상운전과 고장 발생 과 고장허용 제어 적용 시 직류-링크 중성점 전압 변동이 어떤 양상으로 나타나는지 분석하고 고장허용 제어에 의한 NPC 인버터의 고장검출 시간과 커패시터의 용량 사이의 관계를 고찰하였다. 시뮬레이션과 실험 결과를 이용하여 이론적 분석의 타당성을 검증하였다.

계통연계형 3상 3레벨 태양광 인버터의 중성점 전압제어 (Neutral Point Voltage Control for Grid-Connected Three-Phase Three-Level Photovoltaic Inverter)

  • 박운호;양오
    • 반도체디스플레이기술학회지
    • /
    • 제14권4호
    • /
    • pp.72-77
    • /
    • 2015
  • Three-level diode clamped multilevel inverter, generally known as neutral point clamped (NPC) inverter, has an inherent problem causing neutral point (NP) potential variation. Until now, the NP potential problem of variation has been investigated and lots of solutions have also been proposed. This paper presents a neutral point voltage control technology using the anti-windup PI controller and offset technology of PWM (Pulse Width Modulation) to control the variation of NPC 3-phase three-level inverter neutral point voltage. And the proposed algorithm is tested and verified using a PLL (Phase Locked Loop) in order to synchronize the phase voltage from the line voltage of grid. It significantly improves the voltage balancing under a solar fluctuation conditions of the inverter. Experimental results show the good performance and effectiveness of the proposed method.

An Optimized Control Method Based on Dual Three-Level Inverters for Open-end Winding Induction Motor Drives

  • Wu, Di;Su, Liang-Cheng;Wu, Xiao-Jie;Zhao, Guo-Dong
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.315-323
    • /
    • 2014
  • An optimized space vector pulse width modulation (SVPWM) method with common mode voltage elimination and neutral point potential balancing is proposed for an open-end winding induction motor. The motor is fed from both of the ends with two neutral point clamped (NPC) three-level inverters. In order to eliminate the common mode voltage of the motor ends and balance the neutral point potential of the DC link, only zero common mode voltage vectors are used and a balancing control factor is gained from calculation in the strategy. In order to improve the harmonic characteristics of the output voltages and currents, the balancing control factor is regulated properly and the theoretical analysis is provided. Simulation and experimental results show that by adopting the proposed method, the common mode voltage can be completely eliminated, the neutral point potential can be accurately balanced and the harmonic performance for the output voltages and currents can be effectively improved.

영 전위 중성점을 가진 새로운 3상 Three-Level 스위치 전압원 인버터 (Three Phase Three-Level Switched Voltage Source PWM Inverter with Zero Neutral Point Potential)

  • 오원식;한상규;최성욱;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.630-634
    • /
    • 2004
  • A new three phase three-level Pulse Width Modulation (PWM) Switched Voltage Source (SVS) inverter with zero neutral point potential is proposed. The major advantage is that the peak value of the phase output voltage is twice as high as that of the conventional neutral-point-clamped (NPC) PWM inverter. Furthermore, three-level waveforms of the proposed inverter can be achieved without switch voltage unbalance problem. Since the average neutral point potential of the proposed inverter is zero, the common ground between input stage and output stage is possible. The proposed inverter is verified by experimental results based on a laboratory prototype.

  • PDF

Simplified SVPWM that Integrates Overmodulation and Neutral Point Potential Control

  • Zhu, Rong-Wu;Wu, Xiao-Jie
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.926-936
    • /
    • 2014
  • A simplified and effective space vector pulse-width modulation (SVPWM) algorithm with two and three levels for three-phase voltage-source converters is proposed in this study. The proposed SVPWM algorithm only uses several linear calculations on three-phase modulated voltages without any complicated trigonometric calculations adopted by conventional SVPWM. This simplified SVPWM also avoids choosing the vector sector required by conventional SVPWM. A two-level overmodulation scheme is integrated into the proposed two-level SVPMW to generate the output voltage that increases from a linear region to a six-step state with a smoothly linear transition characteristic and a simple overmodulation process without a lookup table and complicated nonlinear functions. The three-level SVPWM with a proportional-integral controller effectively balances the neutral point potential of the neutral point clamped converter. Results from the simulation in MATLAB/Simulink and the experiment based on a digital signal processor are provided to clearly demonstrate the validity and effectiveness of the proposed strategies.

A New Direct Power Control Strategy for NPC Three-Level Voltage Source Rectifiers Using a Novel Vector Influence Table Method

  • Xia, Chang-Liang;Xu, Zhe;Zhao, Jia-Xin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.106-115
    • /
    • 2015
  • This paper proposes a novel direct power control (DPC) strategy for neutral-point-clamped (NPC) three-level rectifiers, to directly control the active power, the reactive power and the neutral point potential of the rectifiers by referring to three pre-calculated vector influence tables and minimizing an objective function. In the three vector influence tables, the influences of different voltage vectors on the active power, the reactive power and the neutral-point potential are shown explicitly. A conceptual description and control algorithm of the proposed controller are presented in this paper. Then, numerical simulations and experiments are carried out to validate the proposed method. Both the simulation and experimental results show that good performances during both the steady-state and transient operating conditions are achieved. As a result, the proposed strategy has been proven to be effective for NPC three-level rectifiers.