• Title/Summary/Keyword: Neumann problem

Search Result 88, Processing Time 0.023 seconds

EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS WITH WEIGHTED FUNCTIONS

  • Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • We study the following nonlinear problem $-div(w(x){\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u)$ in ${\Omega}$ which is subject to Neumann boundary condition. Under suitable conditions on w and f, we give the existence of a positive infimum eigenvalue for the p(x)-Laplacian Neumann problem.

THE NEUMANN PROBLEM FOR A CLASS OF COMPLEX HESSIAN QUOTIENT EQUATIONS

  • Yuying Qian;Qiang Tu;Chenyue Xue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.999-1017
    • /
    • 2024
  • In this paper, we study the Neumann problem for the complex Hessian quotient equation ${\frac{{\sigma}_k({\tau}{\Delta}uI+{\partial}{\bar{\partial}u)}}{{\sigma}_l({\tau}{\Delta}uI+{\partial}{\bar{\partial}u)}}}={\psi}$ with 0 ≤ 𝑙 < k ≤ n. We prove a priori estimate and global C1 estimates, in particular, we use the double normal second derivatives on the boundary to establish the global C2 estimates and prove the existence and the uniqueness for the Neumann problem of the above complex Hessian quotient equation.

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

NOTE ON LOCAL BOUNDEDNESS FOR WEAK SOLUTIONS OF NEUMANN PROBLEM FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • KIM, SEICK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.189-195
    • /
    • 2015
  • The goal of this note is to provide a detailed proof for local boundedness estimate near the boundary for weak solutions for second order elliptic equations with bounded measurable coefficients subject to Neumann boundary condition.

MULTIPLE SOLUTIONS FOR CERTAIN NONLINEAR SECOND-ORDER SYSTEMS

  • Tian, Yu;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.353-361
    • /
    • 2007
  • In this paper, we prove the existence of multiple solutions for Neumann and periodic problems. Our main tools are recent general multiplicity theorems proposed by B. Ricceri.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

UNIQUENESS OF IDENTIFYING THE CONVECTION TERM

  • Cheng, Jin;Gen Nakamura;Erkki Somersalo
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.405-413
    • /
    • 2001
  • The inverse boundary value problem for the steady state heat equation with convection term is considered in a simply connected bounded domain with smooth boundary. Taking the Dirichlet to Neumann map which maps the temperature on the boundary to the that flux on the boundary as an observation data, the global uniqueness for identifying the convection term from the Dirichlet to Neumann map is proved.

  • PDF